
I N S T I T U T E F O R D E F E N S E A N A L Y S E S

State-of-the-Art Resources (SOAR)
for Software Vulnerability Detection,

Test, and Evaluation 2016

E. Kenneth Hong Fong, Project Leader

David A. Wheeler
Amy E. Henninger

 November 2016

Approved for public
release; distribution is

unlimited.

IDA Paper
P-8005

Log: H 2016-000598

Copy

INSTITUTE FOR DEFENSE
ANALYSES

4850 Mark Center Drive
Alexandria, Virginia 22311-1882

About This Publication

This work was conducted by the Institute for Defense Analyses (IDA) under
contract HQ0034-14-D-0001, Task AU-5-3856, “Enhancing Program
Protectionthrough Effective Systems Assurance,” for Office of the Deputy
Assistant Secretary of Defense for Systems Engineering; Acquisition Technololgy
and Logistics. The views, opinions, and findings should not be construed as
representing the official position of either the Department of Defense or the
sponsoring organization.

Copyright Notice

© 2016 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

For more information:

E. Kenneth Hong Fong Project Leader
ehongfon@ida.org, 703-578-2753

Margaret E. Myers, Director, Information Technology and Systems Division
mmyers@ida.org, 703-578-2782

Acknowledgments
Gregory N. Larsen, Reginald N. Meeson, Rama S. Moorthy

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

mailto:ehongfon@ida.org
mailto:mmyers@ida.org

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Paper P-8005

State-of-the-Art Resources (SOAR)
for Software Vulnerability Detection,

Test, and Evaluation 2016

E. Kenneth Hong Fong, Project Leader

David A. Wheeler
 Amy E. Henninger

 i

Executive Summary

Nearly all modern systems depend on software. It may be embedded within the
system, delivering capability; used in the design and development of the system; or used
to manage and control the system, possibly through other systems. Software may be
acquired as a commercial off-the-shelf component, custom developed for the system, or
embedded within subcomponents by their manufacturers. Modern systems often perform
the majority of their functions through software and can easily include millions of lines of
software code.

Although functionality is often created through software, this software can also
introduce risks. Unintentional or intentionally inserted vulnerabilities (including
previously known vulnerabilities) can provide adversaries with various avenues to reduce
system effectiveness, render systems useless, or even turn our systems against us.
Department of Defense (DoD) software, in particular, is subject to attack. Analyzing
DoD software to identify and remove weaknesses is a critical program protection
countermeasure. Unfortunately, it can be difficult to determine what types of tools and
techniques exist for analyzing software, and where their use is appropriate.

The purpose of this paper is to assist Department of Defense (DoD) program
managers (PM), and their staffs, in making effective software assurance (SwA) and
software supply chain risk management (SCRM) decisions, particularly when they are
developing their program protection plan (PPP). A secondary purpose is to inform DoD
policymakers who are developing software policies.

This paper defines and describes the following overall process for selecting and
using appropriate analysis tools and techniques for evaluating software:

1. Select technical objectives based on context. This paper identifies a set of 10
major technical objectives and subdivides them further into up to 3 more levels
of progressively more detailed objectives. For example, the major technical
objective “counter unintentional-‘like’ weaknesses” is subdivided into a second
level of 12 sub-categories, and some of these second-level objectives are
subdivided still further. This multi-stage breakdown of technical objectives is
captured as the table rows in Appendix E, Software State-of-the-Art Resources
(SOAR) Matrix.

2. Select tool/technique types to address those technical objectives. This paper
identifies 59 types of tools and techniques available for analyzing software. The

 ii

supporting “Software SOAR Matrix” provides a detailed mapping between
these tool/technique types and the technical objectives, to help readers identify
and select the types of tools and techniques to meet the technical objectives.

3. Select tools/techniques. This paper identifies, in some cases, where additional
information is available to help the selection process.

4. Summarize selection as part of a Program Protection Plan. This paper provides
guidance on how to summarize the information derived from the selection of
tool/technique types, and later the planned use of the tools/techniques, into a
PPP.

5. Apply the tools/techniques and report the results. Here the selected tools and
techniques are applied, including the selection, modification, or risk mitigation
of software based on tool/technique results. Reports are provided to support
oversight and governance.

Vignettes in Section 8 provide examples of this process. This paper also describes
some key gaps that were identified in the course of this study, including difficulties in
finding unknown malicious code, obtaining quantitative data, analyzing binaries without
debug symbols, and obtaining assurance of development tools. Additional challenges
were found in the mobile environment; examples include lack of maturity in many tools,
expectations of time constraints that preclude in-depth analysis, and widespread use of a
Software-as-a-Service (SaaS) model that limits data availability and application to DoD
systems. These would be plausible areas to consider as part of a research program.

Appendices provide additional detail, including more information on each type of
tool and technique. Appendix D, for example, describes how we believe analysis should
be continuously applied and integrated into the entire software lifecycle, creating a
feedback loop for better-informed risk management decisions.

The information provided here was gathered from a variety of sources, including
many interviews of subject matter experts. These experts identified a number of key
topics, some of which are also captured in this paper.

This paper extends the earlier editions, in response to technology advancements and
reviewer feedback. Appendix G presents in more detail the changes made in this update.

Software analysis is a large and dynamic field, and this paper represents one step in
capturing and organizing a wide range of diverse information. We hope that this material
will continue to be refined through feedback from the larger community.

iii

Contents

Executive Summary ... i
1. Introduction ... 1-1

2. Background .. 2-1

3. Overall Process for Selecting and Reporting Results from Appropriate Tools and
Techniques ... 3-1

A. General Approach .. 3-1

B. Matrix to Help Select Tool/Technique Types to Address Technical
Objectives .. 3-2

C. Using the Matrix .. 3-5

4. Technical Objectives ... 4-1

A. Technical Objectives’ Development Approach .. 4-1

B. Technical Objectives – Main Categories ... 4-2

5. Types of Tools and Techniques ... 5-1

A. Static Analysis ... 5-4

B. Dynamic Analysis ... 5-8

C. Hybrid Analysis ... 5-11

D. Advantages of Combining Tools and Techniques .. 5-12

E. Processes to Combine Tools and Techniques ... 5-13

F. Excluded Tools and Techniques .. 5-16

6. Software Component Context ... 6-1

A. General Factors .. 6-1

B. PPP Contexts ... 6-2

7. Program Protection Plan Roll-up ... 7-1

8. Application .. 8-1

A. Selecting Technical Objectives ... 8-1

B. Selecting Combinations of Tools and Techniques .. 8-3

9. Vignettes .. 9-1

A. OTS Proprietary Software Critical Component .. 9-1

B. OTS Open Source Software Critical Component .. 9-5

C. Custom Critical Component .. 9-8

10. Gaps ... 10-1

11. Conclusions ... 11-1

iv

Appendix A. Resources Used ... A-1

Appendix B. Key Topics Raised in Interviews ...B-1

1. Key Issue: What Data are Available? ..B-1

2. Organizational Approaches ...B-2

3. Other Comments ..B-2

Appendix C. Fact Sheets ...C-1

1. Attack Modeling ..C-2

2. Warning Flags ...C-4

3. Source Code Quality Analyzer ..C-6

4. Source Code Weakness Analyzer ..C-10

5. Source Code Knowledge Extractor ...C-14

6. Traditional Virus/Spyware Scanner ..C-16

7. Bytecode Weakness Analyzer ...C-18

8. Binary Weakness Analyzer ...C-21

9. Inter-application Flow Analyzer ...C-24

10. Binary/Bytecode Simple Extractor ..C-26

11. Compare Binary/Bytecode to Application Permission ManifestC-28

12. Obfuscated Code Detection ...C-29

13. Binary/Bytecode Disassembler ...C-31

14. Focused Manual Spot Check ...C-33

15. Manual Code Review ..C-34

16. IEEE 1028 Inspections ..C-36

17. Generated Code Inspection ...C-38

18. Safer Languages ..C-39

19. Secure Library Selection ...C-41

20. Secured Operating System Overview ..C-43

21. Origin Analyzer ...C-44

22. Digital Signature Verification ...C-47

23. Configuration Checker ..C-48

24. Permission Manifest Analyzer ..C-50

25. Development/Sustainment Version Control ..C-51

26. Obfuscator ...C-53

27. Rebuild and Compare ..C-55

28. Assurance Case ..C-57

29. Formal Methods/Correct by Construction ...C-59

30. Network Scanner ...C-61

31. Network Sniffer ...C-63

32. Network Vulnerability Scanner ...C-65

33. Host-based Vulnerability Scanner ...C-66

34. Host Application Interface Scanner ..C-68

35. Web Application Vulnerability Scanner ...C-69

v

36. Web Services Scanner ...C-73
37. Database Scanner ..C-74
38. Fuzz Tester ..C-76
39. Framework-based Fuzzer ..C-80
40. Negative Testing ..C-82
41. Digital Forensics ..C-83
42. Intrusion Detection Systems/Intrusion Prevention SystemsC-85
43. Automated Detonation Chamber (limited time) ..C-87
44. Forced Path Execution ...C-90
45. Firewall ..C-91
46. Man-in-the-Middle Attack Tool ..C-94
47. Debugger ...C-95
48. Fault Injection ..C-97
49. Logging Systems ...C-99
50. Security Information and Event Management ...C-101
51. Test Coverage Analyzers ...C-103
52. Hardening Tools/Scripts ..C-105
53. Execute and Compare with Application ManifestC-107
54. Track Sensitive Data ...C-108
55. Coverage-guided Fuzz Tester ..C-110
56. Probe-based Attack with Tracked Flow ..C-111
57. Track Data and Control Flow ..C-113

Appendix D. Detailed Compositional Views ... D-1
Appendix E. Software State-of-the-Art Resources (SOAR) Matrix E-1
Appendix F. Mobile Environment .. F-1

1. Mobile Components for the Enterprise ... F-1
2. Mobile Computing Differentiators and Issues .. F-3
3. Mobility – Key issues .. F-10

Appendix G. Additions since the 2013 SOAR ... G-1
Acronyms ... AA-1
Bibliography ... BB-1

1-1

1. Introduction

The purpose of this paper, “State-of-the-Art Resources (SOAR) for Software
Vulnerability Detection, Test, and Evaluation,” is to assist Department of Defense (DoD)
program managers (PM), and their staffs, in making effective software assurance1 (SwA)
and software supply chain risk management2 (SCRM) decisions, particularly when they
are developing their program protection plan (PPP). A secondary purpose is to inform
DoD policymakers who are developing software-related policies.

Nearly all modern systems depend on software. This software has become
increasingly large and complex, including many subsystems that are composed of even
more subsystems. Some software is custom-developed, but a great deal is off-the-shelf
(OTS). This OTS software may be from the Federal Government, other governments, the
technical community, or the marketplace as either open or proprietary commercial
(commercial off-the-shelf (COTS)) products. Software may be provided as a discrete
end-item, or embedded within larger assemblies or packages.

Although software creates functionality, it also poses risks. Unintentional and
intentional vulnerabilities (either originally included or inserted later) can provide
adversaries various avenues through which to reduce system effectiveness, render
systems useless, or even turn our systems against us. The DoD, in particular, is under
constant attack.

Various methods exist to evaluate risk. For the purposes of this paper, they can be
divided into methods to evaluate people, processes, and products.

 People-related methods are used to evaluate risk by examining the individuals
and their organizations that supply goods and services. For example, all-source
intelligence can be used to look for evidence that the suppliers are intentionally
providing vulnerable products, which suppliers are being targeted by

1 Software assurance (SwA) is defined in [CNSS2015] as “The level of confidence that software functions
as intended and is free of vulnerabilities, either intentionally or unintentionally designed or inserted as
part of the software throughout the lifecycle.”

2 Supply chain risk management is defined in [CNSS2015] as “A systematic process for managing supply
chain risk by identifying susceptibilities, vulnerabilities, and threats throughout the supply chain and
developing mitigation strategies to combat those threats whether presented by the supplier, the supplies
product and its subcomponents, or the supply chain (e.g., initial production, packaging, handling,
storage, transport, mission operation, and disposal.”

 1-2

adversaries, and which suppliers are more likely to be producing unintentionally
vulnerable products (e.g., based upon reports of known exploitations).

 Process-related methods evaluate risk by examining the processes used to
develop and sustain the goods and services, with the intention of discerning
likely weaknesses and characteristics of the software produced.

 Product-related methods are used to evaluate risk by examining the goods and
services themselves.

Methods that are used to examine people and processes have important limitations.
Both people- and process-related evaluation methods are indirect methods for evaluating
the actual software produced, yet it is the produced software that actually matters.
Additionally, it is often difficult to identify suppliers (especially at lower tiers), and even
when they are identified, it is often difficult to evaluate risk based on the information
available.

Thus, it is valuable to directly evaluate software products that may be used. This
research, therefore, focuses on tools and techniques for directly evaluating software as a
product. Happily, many types of tools and techniques are available for directly
evaluating software. Unfortunately, it can be difficult to determine what types of tools
and techniques are relevant and when their use is appropriate.

This paper addresses this difficulty, by identifying types of tools and techniques
available for evaluating software, as well as the technical objectives those tools and
techniques can meet. This paper focuses on evaluating software for unintentional and
intentional vulnerabilities, but some tools and techniques also address other issues.

This paper discusses types of both tools and techniques. Tools are primarily
automated systems for evaluating software, although there is typically some manual
effort in their use (e.g., to configure, review results, and apply mitigations based on those
results). Techniques are primarily manual (human) approaches for evaluating software,
although there are typically some automated systems for aiding the manual approach
(e.g., for tracking progress and exchanging data). A potential advantage of tools is
scalability; manual approaches can be too costly or time-consuming for large software
systems. However, techniques can have significant advantages in terms of their ability to
handle context and to focus on what is important.

The tools, suppliers, and organizations named in this paper are used as
representative examples and our lists are not complete. Products and organizations are
constantly evolving, and features are added on a frequent basis. Further, no endorsement
of particular tools, suppliers, or organizations is intended.

In this paper, the software being evaluated is called the target of evaluation (TOE).
As discussed later in the paper, the context in which the software will be used is key; the

1-3

kind of software, and its criticality or mission, are key determinants in deciding whether
or not a particular tool is appropriate. Software evaluation is a challenging problem;
addressing a common set of technical objectives often requires a suite of tools and
techniques.

By itself, this paper does not define an overall strategy for acquiring secure
software, but it and the types of tools and techniques we have identified can support such
an overall strategy.

The information provided here was gathered from a variety of sources, including
many interviews of various experts. We are especially grateful to the interviewees for
their time, and we are also grateful to the Office of the Under Secretary of Defense for
Acquisition, Technology, and Logistics (OUSD(AT&L)), DoD Chief Information Officer
(CIO), and National Security Agency (NSA) for co-sponsoring this work.

Chapter 2 provides a brief background. Chapter 3 describes a possible overall
process for selecting appropriate analysis tool/technique types. This process involves
identifying technical objectives (described in Chapter 4), and selecting tool/technique
types (described in Chapter 5) to address those technical objectives based on the software
context (described in Chapter 6). Specific tools and techniques are then selected. The
plans for a given project, and eventually the results of selecting and applying these tools
and techniques, should be summarized; Chapter 7 describes how to capture this summary
information in a DoD PPP. Chapter 9 provides some vignettes that serve as examples of
the first few steps. Chapter 10 lists key gaps identified in the course of our
investigations. Finally, Chapter 11 presents this paper’s conclusions. The appendices
provide additional detail. Appendix C, in particular, provides detailed fact sheets on each
tool/technique type. Appendix E (provided as a separate electronic file) summarizes how
well the tool/technique types address different technical objectives. Since it is difficult to
quantify this relationship, entries in this appendix represent the authors’ summary of
information derived from a variety of sources, and are not the result of analysis from any
one standard testing regime. Appendix F discusses the mobile environment.

Appendix G describes the major changes made in various revisions of this
document. Some changes were inspired by changes in technology, but many others were
inspired by feedback from our many reviewers, including those from IDA, MITRE, and
the Software Engineering Institute (SEI). We gratefully acknowledge our reviewers’
feedback.

2-1

2. Background

Other works have summarized the landscape of software assurance (SwA) and/or
software supply chain risk management (SCRM). In particular, [Goertzel 2007] presents
an overview; however, it focuses on describing the “state of the art” rather than practical
application. A previous effort, termed “SOAR-Lite Phase I” [Wheeler 2012], identified
current research in software assurance and SCRM, much of which was insufficiently
mature for regular use.

In contrast, this SOAR focuses on the practical application of leading-edge but
sufficiently mature technology. The initial version was released in 2013 and was updated
in 2014. This paper updates previous versions as described in Appendix G.

Our approach when developing the initial 2013 version was to first gather relevant
information, and then organize it in a coherent fashion. We gathered information from a
wide variety of interviews with members of the government community (both within and
outside the DoD military Services), as well as various vendors and suppliers. We also
reviewed many written materials and attended a variety of relevant meetings and
conferences. Appendix A provides more information on the people we interviewed and
the resources we used. Later versions were developed based on feedback.

This research is part of a larger ongoing effort by the DoD to improve SwA and
supply chain assurance. Other documents that describe or enable this process include:

 Deputy Assistant Secretary of Defense – Systems Engineering, Program
Protection Plan Outline & Guidance. [DASD(SE) 2011];

 DoD Instruction 5200.44, Protection of Mission Critical Functions to Achieve
Trusted Systems and Networks (TSN) [DoDI 5200.44];

 Defense Acquisition Guidebook (DAG), particularly chapter 13 [DAG];

 Public law 112–239—Jan. 2, 2013, National Defense Authorization Act
(NDAA) for fiscal year 2013, particularly section 933 [Congress 2013].

It is important to consider assurance throughout the software development lifecycle
(SDLC). The SDLC includes development (requirements, design, implementation, and
test), deployment, operations, sustainment, and disposal. We focus on the DoD lifecycle
as described in DoD Instruction 5000.02 [DoDI 5000.02].

This paper focuses on software. DoD Federal Acquisition Regulation (FAR)
Supplement (DFARS), section 252.227-7014 (“Rights in Noncommercial Computer

 2-2

Software and Noncommercial Computer Software Documentation”), defines computer
software as “computer programs, source code, source code listings, object code listings,
design details, algorithms, processes, flow charts, formulae, and related material that
would enable the software to be reproduced, recreated, or recompiled.” It also defines a
computer program as “a set of instructions, rules, or routines, recorded in a form that is
capable of causing a computer to perform a specific operation or series of operations.”
For this paper we consider a computer program to be data that executes on a central
processing unit (CPU) or graphics processing unit (GPU), including the CPUs in the
controllers of products such as printers and cars. The term “software” includes firmware,
operating systems, and middleware, as well as applications. The term “software” does
not include computer hardware. We also do not include as software the configuration
data that programs a Field Programmable Gate Array (FPGA) (i.e., the bitstream),
including data derived from data written in Verilog or VHDL3. The software tools for
designing, developing, and fabricating hardware components are software, and they are
critically important when using encoded microelectronics. These tools include those for
developing (not using) FPGAs and Application Specific Integrated Circuits (ASIC).
However, we do not specially consider these tools here. Software included in the
application supported by the FPGA should be analyzed as described in this paper.

A few key basics about software and software development are helpful in
understanding this paper. “Source code” is the set of computer instructions in a human-
readable computer language that is written and maintained by software developers. In
many situations source code is translated into a “bytecode” or “binary” (using a program
or device called a compiler). Binaries are representations that can be directly executed by
the computer, while bytecode is an intermediate representation that is executed by some
other program. It is important to know the distinction between source code, bytecode,
and binaries, because some OTS software suppliers will only provide bytecode or
binaries, yet some analysis tools require source code to perform their analysis.
Commercial OTS (COTS) suppliers provide software under a variety of licenses. Some
COTS software is licensed as open source software (OSS). OSS is software for which
the human-readable source code is “available for use, study, reuse, modification,
enhancement, and redistribution by the users of that software” [DoD 2009]. COTS
software that is not OSS is often referred to as “proprietary” or “closed” software; the
source code for such software is often not available or only available at additional cost.

In many cases software is developed by combining a set of software components,
which are in turn made from other software components. These different components are
themselves often provided by different suppliers. Libraries and frameworks are types of
software components that are designed to be reused by other components.

3 VHDL stands for Very-high-speed integrated circuit (VHSIC) Hardware Description Language.

2-3

A “regression test suite” is a set of tests that can be automatically re-invoked. These
are used to ensure that a change in software does not cause some other function to
malfunction.

Most tools and techniques are subject to the problems of false positives and/or false
negatives. A “false positive” is a report that is invalid; e.g., if a tool is intended to report
vulnerabilities, a false positive is a report of a situation that is not actually a vulnerability
as a vulnerability. A “false negative” is a failure to report a situation, e.g., a false
negative occurs when a vulnerability is not reported but should be reported.

Some tools are “sound.” The National Institute of Standards and Technology
(NIST) defines a “sound tool” as follows, a definition it calls the “Ockham Sound
Analysis Criteria” [NIST Ockham]:

 “A site is a location in code where a weakness might occur.”

 “A finding is a definitive report about a site. In other words, that the site has a
specific weakness (is buggy) or that the site does not have a specific weakness
(is not buggy).”

 “A sound tool is a tool for which every finding is correct. The tool need not
produce a finding for every site; that is completeness.”

Some environments, such as Android, support “permission manifests.” In such
systems, each application includes a permission manifest, which is a static set of
permissions that the application claims to require. Note that “permissions” in this context
are the privileges granted to an application, not the permissions set on objects such as
files or memory. Some tools examine these permission manifests, either by themselves
or through comparison with other information. Examples of such permissions
(privileges) include location information (at a coarse or fine level), use of certain sensors
(e.g., microphone access), and network access.

3-1

3. Overall Process for Selecting and Reporting

Results from Appropriate Tools and Techniques

We have identified many different types of analysis tools and techniques. Selecting
among these tool and technique types depends on the software context and technical
objectives. This chapter describes the overall process for selecting types of tools and
techniques, selecting specific tools and techniques, and reporting their results.

A. General Approach

Our proposed approach for selecting various tools and techniques, and developing
reports using them, is to first identify the software components in a target of evaluation
(TOE) and determine each software component’s context of use (as described in section
6.A).

Then, for each software component context of use:

1. Identify technical objectives based on context. Technical objectives are
discussed in Chapter 4. Applying this information to select specific technical
objectives is further discussed in section 8.A.

2. Select tool/technique types needed to address the technical objectives, using the
matrix discussed below (in section 3.B) and presented in Appendix E.
Tool/technique types are discussed in Chapter 5 and the fact sheets in the
appendices. Applying this information to select specific tool/technique types is
further discussed in section 8.B.

3. Select specific tools (see guidance in Chapter 5 and context as described in
Chapter 6).

4. Summarize selection (write down your plan), which may be part of a larger
report. In the DoD, this would be part of the Program Protection Plan (PPP)
(see Chapter 7).

5. Apply the analysis tools, use their results, and report appropriately. Here the
selected tools and techniques are applied, including the selection, modification,
or risk mitigation of software based on tool/technique results, and reports are
provided to those with oversight authority.

 3-2

B. Matrix to Help Select Tool/Technique Types to Address Technical

Objectives

Since different tool/technique types are better at addressing different technical
objectives, we suggest ensuring that the set of tool/techniques selected adequately cover
the intended technical objectives. One way to do this is to use a matrix we have
developed that specifies the technical objectives met, to some degree, by various
tool/technique types. This section describes key parts of the matrix.

Figure 3-1 shows the general outline of the matrix. The full matrix is in
Appendix E, Software SOAR Matrix. On the left-hand side is the set of technical
objectives (discussed in Chapter 4). Many technical objectives are subdivided further
into lower-level objectives, and these subdivisions are shown as additional columns. A
“need indicator” helps identify when certain technical objectives may be important, e.g.,
countering buffer overflows may be important in programs written in the C, C++, and
Objective-C languages, yet are often irrelevant otherwise. The next set of columns
identifies various tool/techniques types (per Chapter 5); these are arbitrarily numbered (as
1, 2, and so on) in this general outline to simplify this diagram. The tool/technique types
are grouped into three larger categories: static, dynamic, and hybrid.

Technical Objective

Lower-level

technical

objective

Need

indicator

Tool/technique type

Static Dynamic Hybrid

1 2 … 21 2

2

… 31 …

Design & code quality

Counter unintentional-like

known vulnerabilities

… √

Authentication & access

control

Authentication

… √

Counter unintentional-like

weaknesses

Buffer handling C/C++/

Objective-C

… …

Figure 3-1. Matrix Outline

The cells in the matrix that connect technical objectives with tool/technology types

indicate the applicability of the tool/technology type for addressing that technical
objective, as determined by the authors. These indicators are:

 = Completely addresses this objective. This indicator is, unfortunately,
rarely used. These cells are shaded green.

3-3

 = Can be a highly cost-effective measure to address this objective;
investigate further. These cells are shaded yellow.

 = Can be cost-effective for partial coverage of this objective. These cells
are shaded orange.

 = Not identified as being typically applied for this objective.

Cell entries represent the authors’ qualitative summary of information provided by a
variety of sources. We examined the information we had gathered (including interviews
and documents), aggregated the whole set, then debated until the authors agreed on a
rating for each cell (each cell pairs a tool/technique type with a technical objective).4
Cell values represent the best expected value for that tool/technique type; a specific tool
that implements a given type will not necessarily produce this best expected value for a
given technical objective and context. Tools are often designed to only process a
particular kind of application (e.g., a web application) and/or set of programming
languages (e.g., C, Java, C#, or Python). In addition, most tools use rulesets and/or
heuristics; different rulesets and heuristics can produce significantly different results. In
some cases additional commentary was attached to cells. Cell entries are not the result of
analysis from any standard testing regime, because it is currently difficult to quantify this
relationship and few standard testing regimes are available. The NIST Software
Assurance Metrics and Tool Evaluation (SAMATE) project and NSA Center for Assured
Software (CAS) have developed and are running test suites for a few specific
tool/technique types, but attempting to expand such a process to all the tool/technique
types and technical objects that we address would have exceeded the resources available.
We expect this relationship indication can be improved over time with contributions from
the community, experience, and advances in measurement. Still, we believe that there is
value in providing subject matter expert guidance for typical cases.

The full matrix (but not the excerpt matrix outline above) includes an additional
column, titled “best applicability,” immediately to the left of the first tool/technique type
column. The “best applicability” column shows the best applicability value for each row,
e.g., if there is some tool/technique type that completely addresses the objective in a
given row, this column will have the indicator for “completely addresses this objective.”
This column answers the question, “what would happen if all of tools/techniques listed
were used?” This column reveals that only a very few technical objectives are

4 Versions previous to 2016 were written by David A. Wheeler and Rama S. Moorthy. The additions for
the 2016 version were developed by authors David A. Wheeler and Amy E. Henninger, based on the
previous work. We thank Rama S. Moorthy for her work on the previous versions.

 3-4

completely addressed. This column also reveals that there is especially poor coverage for
countering some kinds of intentional-“like”/malicious logic.

The full matrix (but not the excerpt matrix outline above) also includes an estimated
“cost to implement” and “subject matter expert (SME) expertise” entry for each
tool/technique type. These entries provide a rough qualitative estimate for using the
tool/technique for a given project, as estimated by the authors. These qualitative
estimates are primarily comparisons between examples of different tool/technique types,
because costs and necessary expertise for a given situation will widely vary depending on
many factors (such as the size of the software). In particular, a tool may cost somewhat
more if it is a higher-end tool for a given type or if it is licensed for an especially large
project. In some cases it is difficult to give even a qualitative estimate, so in those cases a
range is given. The purpose of these estimates is not to provide detailed cost or expertise
estimations, because actual values can vary considerably. Instead, their purpose is to
identify qualitative differences between different tool/technique types. For example, in
practically all cases, the tool/technique type “full manual source code review” will cost
far more than using “warning flags” or “traditional virus detection,” regardless of the
program. It is these qualitative differences that “cost to implement” and “SME expertise”
are designed to reflect. Thus, while a specific tool may vary in cost or required expertise
compared to the entries given here, these qualitative values provide useful indicators
when comparing different tool/technique types.

The “cost to implement” entry has the following codes for each tool/technique type:

 $: The tool/technique has costs similar to the tool/technique type’s “warning
flags” (when initiated before code development) and “traditional virus
detection.” It is already included in existing toolsets, free, or can often be
acquired for less than $10K, and the annual cost to operate and remediate (at
least in certain circumstances) is similarly low. Note that costs can vary
considerably by circumstance. For example, the “warning flags” approach is
often low-cost if warning flags are enabled before writing software, since
developers can typically quickly remediate and learn to avoid the circumstances
that trigger warnings while they are initially developing software. In contrast,
enabling warning flags can be much more expensive if applied to already-
written software, since there is often a large amount to remediate, and each
remediation typically requires a more extended follow-on analysis.

 $$: The tool/technique acquisition has costs similar to the tool/technique type
“source code weakness analyzers.” This type often costs $10K-$50K to initially
acquire, including the tools themselves. In addition, there are nontrivial costs to
analyze tool results and then to implement mitigations.

 3-5

 $$$: The tool/technique acquisition has costs similar to the tool/technique type
“context-configured source code weakness analyzer.” This tool/technique type
is often more expensive than “source code weakness analyzers” because it
configures a source code weakness analyzer specifically for the product being
evaluated (e.g., by adding many additional rules). This type often costs $50-
$200K to initially acquire, including the tools themselves. In addition, there are
nontrivial costs to analyze tool results and then to implement mitigations.

 $$$$: The tool/technique has very large costs similar to the tool/technique type
“full manual source code review”; these costs are typically due to a large
amount of expert manual labor. This type often costs over $200K for
acquisition and application to a medium or larger-sized project.

Note that many tools in practice require some sort of annual maintenance fee, as
well as general administrative maintenance to continue working; often these costs are
some percentage of the initial purchase price.

The “subject matter expert (SME) expertise” entry has the following codes for each
tool/technique type:

 E: The training time is similar to the tool/technique type “enabling warning
flags.” This is often 3 weeks or less for a typical developer or system analyst.

 EE: The training time is similar to “source code weakness analyzer” and
“framework-based fuzzer.” This often requires 1 to 4 months for a typical
developer or system analyst to become proficient (though it may be much less to
get started). Experts are not too difficult to find or train, but note that they tend
to have 5 or more years’ experience in development/analysis.

 EEE: The training time is similar to “focused manual spot check - Focused
manual analysis of source.” This often requires 4 to 9 months for a typical
developer or system analyst to become proficient. Experts can be difficult to
find, and may be quite senior (thus costly).

 EEEE: The training time is similar the tool/technique types “debugging” (for the
purpose of thoroughly analyzing previously-unseen software for software
assurance) and “formal methods.” This often requires more than 9 months for a
typical developer or system analyst to become proficient, and that proficiency
may be tied to a particular product being examined. Experts are relatively rare,
and may be quite senior (thus costly).

C. Using the Matrix

To use the matrix, identify a set of technical objectives, and then identify a set of
tool/technique types that might help meet those objectives. Then investigate those

 3-6

tool/technique types for applicability on that particular component/system (the fact sheets
in Appendix C, as well as the estimates of cost and required expertise, can help do this).
Then select tool/technique types to cover the technical objectives and verify that they
cover the technical objective.

Using multiple types of tools and techniques for each technical objective would
typically provide better coverage, since different types provide different kinds of
information. Doing so often costs more, since more tools are being applied, and
integrating multiple data results from dissimilar sources often requires additional
investment and knowledge.

The National Defense Authorization Act for Fiscal Year 2014 [NDAA 2014]
section 937 requires the establishment of a “joint federation of capabilities to support the
trusted defense system needs of the Department of Defense,” including a charter to set
forth the “the requirements for the federation to procure, manage, and distribute
enterprise licenses for automated software vulnerability analysis tools.” This matrix may
help members of this federation perform these tasks by helping them identify types of
tools and techniques that could be especially helpful in different circumstances.

The following chapters describe in more detail proposed technical objectives,
tool/techniques types, and software contexts, so that this matrix can be effectively used.

 4-1

4. Technical Objectives

Different types of tools and techniques are better for different purposes. Thus, it is
important to identify the various purposes for using different types of tools and
techniques, so that the most appropriate types can be selected. In this paper, these
purposes are called technical objectives.

Chronologically the software context should be determined first, and then the set of
technical objectives for that context should be determined. However, it is more
challenging to explain how to select technical objectives for a given context without first
explaining technical objectives. Therefore, this paper explains technical objectives first;
Chapter 6 then discusses selecting technical objectives for a given context.

The following sections describe how this set of technical objectives was developed,
followed by a summary of the top levels of the technical objectives.

A. Technical Objectives’ Development Approach

It is common for security issues to be categorized as being related to confidentiality,
integrity, and availability; the DoD also separately considers authentication and non-
repudiation [DoDI 8500.01]. However, since a vulnerability can cause problems in all of
those areas, these categorizations are too general to support narrowing the selection of
appropriate tool/technique types.

Even at a more detailed level, there is no universally accepted set of categories for
technical objectives. The Common Weakness Enumeration (CWE) identifies a very large
set of common weaknesses in software that may lead to vulnerabilities, but while CWE is
useful for many purposes, it does not provide a single, simple organizational structure,
that is necessary for our purposes. “Top” lists, such as the “CWE/SANS top 25” and the
“Open Web Application Security Project (OWASP) top 10,” are helpful in identifying
especially common weaknesses, but they make no attempt to cover all relevant
objectives.

Instead, we have focused on identifying a set of detailed technical objectives that
can help narrow the selection of appropriate tools and techniques. We created this set of
technical objectives by merging several accepted sources. These sources included:

 The NSA Center for Assured Software (CAS), in particular their tools studies.
This provided a foundational structure for breaking down weaknesses that were
unintentional. [CAS 2012].

 4-2

 National Vulnerability Database (NVD) CWE categories [NVD]. This
supported the organizational structure by identifying non-overlapping areas that
required coverage.

 Common Weakness Enumeration (CWE)/System Administration, Networking,
and Security Institute (SANS) top 25. We used this to create more granular
objectives, so that users could focus on particularly important technical
objectives.

 PPP outline/Defense Acquisition Guidebook (DAG) Chapter 13 material.

 Open Web Application Security Project (OWASP).

 Web Application Security Consortium (WASC).

The associated matrix subdivides technical objectives, in some cases down to four
levels, to further refine where different tool/technique types can be best applied.

Users may choose to extend the matrix. A program may have other technical
objectives than the ones we list, for example, a project may wish to counter the risk of a
supplier no longer supporting a product (e.g., a company has gone out of business or has
retired a product). Alternatively, a project may choose to subdivide some technical
objective(s) further, to help determine which tool/technique types cover which portions of
a technical objective and where there are critical gaps.

Note that these technical objectives apply to mobile environments as well as other
environments. For example, a lower tier in the objective “counter intentional-
like/malicious logic” is embedded malicious logic (this is additional functionality not
desired by the user, sometimes called a “Trojan horse”). This would be a relevant
objective if a concern is a malicious mobile application having legitimate access to the
microphone and network and acting as audio spyware invoked without permission or user
knowledge. The technical objective category “other” includes countering “excessive
power consumption,” an issue that is rarely a key technical objective in other
environments yet which can be a critical vulnerability if manipulated in mobile
environments.

B. Technical Objectives – Main Categories

Table 4-1 lists the top-level technical objectives. Categories that are used directly or
derived from [NSA 2012] are marked with an asterisk. The technical objectives are in
many cases subdivided further. For example, the technical objective “counter
unintentional-‘like’ weaknesses” is subdivided further into a second level.

 4-3

Table 4-1. Top-level Technical Objectives

1. Provide design & code* quality

1. Buffer Handling*

2. Injection* (SQL,

command, etc.)

3. Encryption and

Randomness*

4. File Handling*

5. Information Leaks*

6. Number Handling*

7. Control flow

management*

8. Initialization and

Shutdown [of

resources/

components]*

9. Design Error

10. System Element

Isolation

11. Error Handling* &

Fault isolation

12. Pointer and

reference handling*

2. Counter unintentional-like known vulnerabilities

3. Ensure authentication and access control*

a. Authentication Issues

b. Credentials Management

c. Permissions, Privileges, and Access Control

d. Least Privilege

4. Counter unintentional-“like” weaknesses

5. Counter intentional-“like”/malicious logic*

a. Known malware

b. Not known malware

6. Provide anti-tamper and ensure transparency

7. Counter development tool inserted weaknesses

8. Provide secure delivery

9. Provide secure configuration

10. Other

* indicates categories that are used directly or are derived from [NSA 2012].

Below is more information about the top-level technical objectives, including a brief

list of some of their subdivisions. For brevity, many of the sub-categories do not include
verbs, as their purpose can be inferred from the upper-level technical objectives they
support. Categories that are used directly or derived from [NSA 2012] are marked with
an asterisk:

1. Provide design and code quality*. Note that [NSA 2012] identifies “code
quality” as a category; we have expanded this category to include design
quality. Strictly speaking, most analysis tools and techniques can only provide
information on the quality of the result; they cannot by themselves actually
provide design or code quality. Nevertheless, the objective is to provide

 4-4

information on or indicators of design and code quality, through the use of tools
and techniques that attempt to measure the quality of candidate software.

2. Counter unintentional-like known vulnerabilities*. A component, including
obsolete subcomponents, may have a known vulnerability. One approach for
checking this is to examine the common vulnerability enumeration (CVE) list,
which provides a standardized name convention. However, note that not all
known vulnerabilities have CVEs. Vulnerabilities that appear to be
unintentional, but are not known, are covered by other technical objectives
(primarily the technical objective “counter unintentional-‘like’ weaknesses”).
Vulnerabilities that appear to be intentional, are covered by the technical
objective “counter intentional-‘like’/malicious logic.”

3. Ensure authentication and access control*. We have separated this category
from countering unintentional-like and intentional weaknesses, because it is
often unclear whether it is intentional or not. Also, it is important to subdivide
this category, and we found it easier to discuss these subdivisions separately.
The first three subcategories below were identified by [NVD]:

a. Authentication Issues. This occurs “when an actor claims to have a given
identity, [but] the software does not prove or insufficiently proves that the
claim is correct” (this definition is from CWE-287).

b. Credentials Management. This occurs when there is inadequate
management of credentials (such as passwords or cryptographic keys).

c. Permissions, Privileges, and Access Control. This includes granting
resource access to another component that should not be allowed that
access. Mobile environments often isolate applications from each other;
applications that improperly and unintentionally allow other applications
access to their services or resources are covered here. Note that the CWEs
separate subjects (active processes) from objects (data). Thus applications
that fail to authorize requests are missing authorization or may have
improper/incorrect authorization. In contrast, applications that unwisely
permit other applications to access resources (including critical resources
possibly due to incorrect defaults) are considered to have permission issues.

d. Least Privilege. Weaknesses in this category occur with improper
enforcement of sandbox environments, or the improper handling,
assignment, or management of privileges (this definition is from CWE-265).

4. Counter unintentional-like weaknesses. This technical objective covers
weaknesses that are commonly unintentionally inserted by developers.
However, we use the term “unintentional-like” because it is quite possible for a

 4-5

malicious developer to intentionally insert a vulnerability that appears to be
unintentional. When examining a TOE, we can only guess at human intent.
Nevertheless, if an unintentional-like weakness is inserted intentionally, tools
and techniques for unintentional-like weaknesses can still be applied. We have
subdivided this further; for more detail (including definitions) on the
subdivisions marked with an asterisk, see [CAS]:

a. Buffer Handling*,

b. Injection* (SQL, command, etc.),

c. Encryption and Randomness*,

d. File Handling*,

e. Information Leaks*,

f. Number Handling*,

g. Control Flow Management*,

h. Initialization and Shutdown (of resources/components)*,

i. Design Error (This covers design errors that lead to unintentional
vulnerabilities.),

j. System Element Isolation (This covers errors involving allowing system
elements unfettered access to each other.),

k. Error Handling* and Fault isolation,

l. Pointer and Reference Handling*.

5. Counter intentional-like/malicious logic*. This objective covers weaknesses
that are commonly intentionally inserted (directly or indirectly), including
viruses, backdoors (logic that enables later unauthorized access), Trojan horses
(software that does something malicious in addition to its stated purpose,
including software that colludes to transmit data via covert channels), and so on.
As with unintentional-like weaknesses, we can only guess human intent. It is
possible in some cases for a vulnerability to appear malicious, yet not be
intentionally so. This objective is subdivided into:

a. Known malware. This includes viruses with known signatures or patterns.

b. Not known malware.

6. Provide anti-tamper and ensure transparency. The objective of anti-tamper is
“to impede unapproved technology transfer, alteration of system capability, or
countermeasure development” (per https://at.dod.mil/). This can be an
important goal for critical program information (CPI). This paper does not

https://at.dod.mil/

 4-6

specifically examine tools and techniques to implement this objective, since
other organizations already focus on this. For more information on anti-tamper
tools and techniques, see the DoD anti-tamper site at https://at.dod.mil/. The
flip side of anti-tamper is transparency, in particular, the ability to easily
examine in-depth a particular component. Non-transparent components (e.g.,
obfuscated ones) are more difficult to analyze, and thus it is more difficult to
ensure that they have included good properties and avoided negative ones. It is
possible to provide both, e.g., to require transparency from off-the-shelf
suppliers for components to be used, then obfuscating custom components (or
the combined fielded result) to impede technology transfer by adversaries.

7. Counter development tool-inserted weaknesses. Development and sustainment
tools can themselves insert weaknesses, malicious or not. This objective covers
countering this issue.

8. Provide secure delivery. This objective covers ensuring that software is
delivered only to the intended recipient(s) with the requisite confidentiality,
integrity, availability, and non-repudiation.

9. Provide secure configuration. This objective covers ensuring that the software,
when installed and used, is securely configured for its context.

10. Other. This objective covers issues that do not easily fit into any other category.
This includes excessive power consumption that can cause degradation of server
performance and result in denial of service (loss of availability) in mobile
applications.

https://at.dod.mil/

 5-1

5. Types of Tools and Techniques

There is no widely accepted complete categorization of tools and techniques. The
NIST SAMATE project web page has a brief but limited list of tool categories.5 But this
list is a work-in-progress; NIST has requested that a more organized taxonomy be
developed.6 Another valuable source for categories of tools and techniques is [BAH
2009].

We have created a categorization of tools and techniques based on our own analysis,
using sources such as our interviews and the NIST SAMATE project. It is not the only
possible categorization, and since it is incomplete, we do not call it a taxonomy. Our
goal is simply to create a useful set of categories that can be extended as required. Unless
otherwise noted, a category is a type of tool (it is primarily automated) and not a type of
technique. In general, we only included tool types where there is at least one
commercially available tool; we granted some exceptions in the mobile space because
that is a fast-paced environment. For more about promising research efforts in this space,
see [Wheeler 2012]. We expect that new types of tools and technologies could be added
in the future to these categories, driven by innovation and commercialization (especially
in the mobile environment).

This chapter presents our categorization of types of tools and techniques. We have
identified the following three major groupings of types of analysis tools and techniques:

 Static analysis: Examines the system/software without executing it, including
examining source code, bytecode, and/or binaries.

 Dynamic analysis: Examines the system/software by executing it, giving it
specific inputs, and examining results and/or outputs.

 Hybrid analysis: Tightly integrates static and dynamic analysis approaches. For
example, test coverage analyzers use dynamic analysis to run tests and then use
static analysis to determine which parts of the software were not tested. This
grouping is used only if static and dynamic analyses are tightly integrated; a tool
or technology type that is primarily static or primarily dynamic is put in those
groupings instead.

5 http://samate.nist.gov/index.php/Tool_Survey.html
6 http://samate.nist.gov/index.php/Tool_Taxonomy.html

http://samate.nist.gov/index.php/Tool_Survey.html
http://samate.nist.gov/index.php/Tool_Taxonomy.html

 5-2

This grouping is similar to the groupings used by the 2015 Gartner Magic Quadrant
for Application Security Testing (AST) report. That document groups tools into the
following categories [Mello2015]:

 Static AST (SAST): “This technology analyzes an application's source and
binary code for security vulnerabilities, typically at the programming or testing
phases of the software lifecycle.” This is essentially the same as our “static
analysis” category.

 Dynamic AST (DAST): “This testing method analyzes applications while
they’re running. It simulates attacks against an application, analyzes the
application's reactions to the attack, and then determines whether it’s vulnerable
or not.” This is very similar to our “dynamic analysis” category, since we also
emphasize execution. We do not strictly require attack simulation, though that
is common.

 Interactive AST (IAST): “This technology combines elements of SAST and
DAST simultaneously. It’s typically implemented as an agent within the test
runtime environment.” We term this as “hybrid analysis.”

 Mobile AST: “This method uses a combination of traditional SAST and DAST,
and behavioral analysis using static and dynamic techniques to discover
malicious or potentially risky actions the app may be taking unbeknownst to the
user, which analyzes security vendors’ static, dynamic, mobile, and interactive
application testing capabilities.” We do not create a separate category for these.
Mobile is simply a particular kind of target, and can be addressed by static,
dynamic, and/or hybrid analysis.

Most tools and techniques are subject to both false positives and false negatives. As
a gross overgeneralization, static analysis tools have built-in a mechanism for reducing
false negatives (missed vulnerabilities): they have access to the entire program’s potential
flow of data and control. However, static analysis tool developers have to contend with
minimizing their tools’ false positive rates, since a mistake in a particular area of code
might not actually be exploitable in a wider context. Dynamic analysis tools have a built-
in mechanism to help minimize false positives: a relevant data and control path must be
executed before it will be detected. However, dynamic tool developers must contend
with minimizing their tools’ false negative rates (undetected vulnerabilities), because if a
code path or data flow is not executed, the tools will typically be unable to report
vulnerabilities along that path. Hybrid tools can inherit some of the strengths and
weaknesses of static and dynamic approaches, depending on how they combine the
approaches. These are generalizations; potential users must examine the particular tools
they are interested in, and research continues to improve tools in all of these groupings.
In general, it is better to use both static and dynamic approaches together (possibly

 5-3

including hybrid approaches). We continue to expect that more hybrid analysis
approaches will be developed in the future.

Some specific tools or tool suites combine multiple approaches. For example, some
tool suites include both a static analysis tool (e.g., a source code weakness analyzer) and
a dynamic analysis tool (e.g., a web application scanner). A tool may combine multiple
dynamic approaches, or multiple static approaches, or multiple hybrid approaches. A
tool may even combine multiple static, multiple dynamic, and/or hybrid approaches. We
expect that there will be an increase in the number of tools and/or tool suites that use
multiple analysis approaches. Some tool suites designed to support analysis of mobile
applications use a large number of different approaches, and are difficult to fully
categorize; this may reflect the fact that mobile environments are newer and have tools
which are rapidly evolving. We also expect this trend to continue.

For each of these major groups (static, dynamic, and hybrid), we have identified a
number of types of tools and techniques. The following subsections briefly identify and
describe these types. In a few cases we show groupings of types, and then the types
themselves as sub-lists. More detail about each type can be found in the fact sheets in
Appendix C. The fact sheets include a list of examples of tools that include the given
tool/technique. As previously stated, the lists are illustrative and not all-inclusive and no
endorsement of any particular tool is implied. Also note that not all of the specified tools
in a category necessarily address a technical objective as shown in the SOAR Matrix, but
at least one tool in that category does. Users should evaluate specific tools as appropriate
once they know what technical objectives they wish to address.

In some cases a tool/technique type can be used in different ways that substantially
affect its effectiveness for some technical objectives. In these cases we discuss the
general tool/technique type once and show these different ways as separate columns in
the matrix. We count the number of matrix columns when we report the number of
tool/technique types, since when making decisions it is comparing these different
columns that matters.

Different names are used in industry for the same type of tool or technique, and in
some cases the same name is used for different types. For our purposes we selected one
name as the primary name for a given tool/technique type. We preferred names that were
short, descriptive, and used in practice. Note that the tool/technique type names do not
necessarily have the same grammatical part of speech, since in practice people refer to
these tools and techniques in different ways. That said, we often used nouns when
referring to a tool, and other forms of speech when referring to techniques or groups of
tools. The fact sheets identify some of the alternative names in use.

In the past, addressing assurance has often focused on source code weakness
analysis tools (a.k.a. source code security analyzers, static analysis code scanners, static

 5-4

application security testing (SAST) tools, or code weakness analysis tools). These tools
can be very useful. However, as should be clear from the long list of tool/technique types
in this paper, other types of tools/techniques can be applied to address assurance.

A. Static Analysis

The following are static analysis tool/technology types:

1. Attack modeling. Attack modeling analyzes the system architecture from an
attacker’s point of view to find weaknesses or vulnerabilities that should be
countered.

2. Source code analyzers7 is a group of the following tool types:

a. Warning flags. Warning flags are mechanisms built into programming
language implementations and platforms that warn of dangerous
circumstances while processing source code.

b. Source code quality analyzer. Source code quality analyzers examine
software source code and search for the implementation of poor coding or
certain poor architecture practices, using pattern matches against good
coding practices or mistakes that can lead to poor functionality, poor
performance, costly maintenance, or security weaknesses depending on
context. There is now a preponderance of evidence that higher-quality
software (in general) tends to produce more secure software [Woody 2014].
These kinds of tools are often less expensive than some other kinds, and can
often be applied earlier in development, providing good reasons to use them
even when the focus is to develop secure software.

c. Source code weakness analyzer. Source code weakness analyzers examine
software source code and search for vulnerabilities, using pattern matches
against well-known common types of vulnerabilities (weaknesses). This
kind of tool is also called a “source code security analyzer,” “static
application security testing” (SAST) tool, “static analysis code scanner,” or
“code weakness analysis tool.” We’ve chosen the name “source code
weakness analyzer” because this name more clearly defines what this type
of tool does and distinguishes it from other types of analysis.

d. Context-configured source code weakness analyzer. This configures a
source code weakness analyzer specifically for the product being evaluated
(e.g., by adding many additional rules).

7 For the purposes of this paper, “source code analyzer” is a group of tool types; the lettered items below

are the tool/technique types. A person who performs manual review of source code could also be
considered a “source code analyzer,” but for our purposes we group manual review processes separately.

 5-5

e. Source code knowledge extractor for architectural, design, and mission layer
information. This extracts information such as the architecture and design
from the source code to aid analysis. Note that knowledge extractors can be
used in many other ways; in particular, a knowledge extractor can be used as
the technical baseline for implementing source code quality analyzer or a
source code weakness analyzer. In those cases extractors fall into other
categories; this category focuses solely on using extractors to obtain
architectural, design, and mission layer information.

f. Requirements-configured source code knowledge extractor. This configures
a source code knowledge extractor to analyze a particular system.

3. Binary/bytecode analysis is a group of the following tool types:

a. Traditional virus/spyware scanner. Traditional virus/spyware scanners
search for known malicious patterns in the binary or bytecode. Note that
modern anti-virus programs also perform behavioral analysis; this capability
is (for our purposes) rolled into intrusion detection systems (IDS)/intrusion
prevention systems (IPS).

b. Quality analyzer. Binary/bytecode quality analyzers examine the binary or
bytecode (respectively) and search for the implementation of poor coding or
certain poor architecture practices, using pattern matches against good
coding practices or mistakes that can lead to poor functionality,
performance, costly maintenance, or security weaknesses depending on
context. Note that this is similar to source code quality analyzers, except the
analysis is performed on a binary or bytecode. There is now a
preponderance of evidence that higher-quality software (in general) tends to
produce more secure software [Woody 2014].

c. Bytecode weakness analyzer. Bytecode weakness analyzers examine
binaries and search for vulnerabilities, using pattern matches against well-
known common types of vulnerabilities (weaknesses). Note that these are
similar to source code weakness analyzers, except the analysis is performed
on bytecode.

d. Binary weakness analyzer. Binary weakness analyzers examine binaries and
search for vulnerabilities, using pattern matches against well-known
common types of vulnerabilities (weaknesses). Note that these are similar
to source code weakness analyzers, except the analysis is performed on a
binary.

e. Inter-application flow analyzer. These tools examine the control and/or data
flows of a set of applications, identifying their communication interfaces

 5-6

(such as Android intents [Android intents]) and permissions, and then
identify flows that violate the security policy.

f. Binary/bytecode simple extractor. Binary/bytecode simple extractors are
simple tools that report simple facts about binary executables or bytecode,
or perform trivial analysis of them. e.g., they may report the text strings
within a binary or bytecode.

g. Compare binary/bytecode to application permission manifest. Examine the
binary/bytecode to determine what permissions the application attempts to
use, and compare that to the permissions actually requested in the
application permission manifest. Note that permissions in this context are
the privileges granted to an applications, not the permissions set on objects
such as files or memory.

4. Obfuscated code detection. Obfuscated code detectors detect when code is
rendered obscure. They may be applied to source code (e.g., JavaScript),
bytecode, or executables. Obfuscation may be used to counter reverse-
engineering of critical or proprietary technology, but it can also be used to
counter analysis by other assurance tools. Thus, obfuscated code may represent
an increased risk of unintentionally vulnerable or intentionally malicious code.

5. Binary/bytecode disassembler. Binary/bytecode disassemblers recover higher-
level constructs from lower-level binaries and bytecode, which can then be
analyzed by people or automated tools.

6. Human review. This is typically done with source code, but it can also be done
with binary or bytecode (often this is generated by a binary or bytecode
disassembler, as noted above). Note that human reviews can apply to products
other than code, including requirements, architecture, design, and test artifacts.
Human reviews include the following more specific types of techniques:

a. Focused manual spot check. This specialized technique focuses on manual
analysis of code (typically less than 100 lines of code) to answer specific
questions. For example, does the software require authorization when it
should? Do the software interfaces contain input checking and validation?

b. Manual code review (other than inspections). This specialized technique is
the manual examination of code, e.g., to look for malicious code.

c. Inspections (Institute of Electrical and Electronics Engineers (IEEE)
standard). IEEE 1028 inspection is a systematic peer examination to detect
and identify software product anomalies.

d. Generated code inspection. This technique examines generated binary or
bytecode to determine that it accurately represents the source code. For

 5-7

example, if a compiler or later process inserts malicious code, this technique
might detect it. This is usually a spot check and not performed across all of
the code.

7. Secure platform selection is a group of the following tool types:

a. Safer languages. This is selecting languages, or language subsets, that
eliminate or make it more difficult to inadvertently insert vulnerabilities.
This includes selecting memory-safe and type-safe languages.

b. Secure library selection. Secure libraries provide mechanisms designed to
simplify developing secure applications. They may be standalone or be
built into larger libraries and platforms.

c. Secured operating system (OS). A secured OS is an underlying operating
system and platform that is hardened to reduce the number, exploitability,
and impact of vulnerabilities.

8. Origin analyzer. Origin analyzers are tools that analyze source code, bytecode,
or binary code to determine their origins (e.g., pedigree and version). From this
information, some estimate of riskiness may be determined, including the
potential identification of obsolete/vulnerable libraries and reused code.

9. Digital signature verification. Digital signature verification ensures that
software is verified as being from the authorized source (and has not been
tampered with since its development). This typically involves checking
cryptographic signatures.

10. Configuration checker. Configuration checkers assess the configuration of
software to ensure that it meets requirements, including security requirements.
A configuration is the set of settings that determine how the software is
accessed, is protected, and operates.

11. Permission manifest analyzer. Permission manifest analyzers are tools that
analyze the application’s permission manifest and estimate level of risk
(possibly using policy requirements to determine what is more or less risky).
This requires that there be a permission manifest (e.g., like Android’s), and is
similar to a configuration checker. Note that this manifest analysis is done
without reference to the code itself.

12. Development/sustainment version control. Version control tools record and
track who made which change, and when the change was made. This
information can ease identification of who may have inserted vulnerabilities
(unintentional or malicious). Version control creates a deterrent for inserting
vulnerabilities and a starting point for remediation.

 5-8

13. Obfuscator. An obfuscator tool takes source, bytecode, or binary and
transforms it into something difficult to understand or reverse-engineer.

14. Rebuild and compare. The rebuild and compare technique rebuilds a bytecode
or binary from its purported source code, and then determines whether the
rebuilt version is equivalent to the bytecode or binary provided. If it is, then the
bytecode or binary corresponds to its purported source code (given certain
assumptions).

15. Formal methods/correct-by-construction. Formal methods are the use of
mathematically rigorous techniques and tools for the specification,
development, and verification of software and hardware systems [Butler]. We
provide more information in Appendix C, but as explained in the appendix, they
are not listed in the matrix or in the count of tool/technique types.

B. Dynamic Analysis

The following are dynamic analysis tool/technique types (this work assumes that
traditional functional testing is already being performed separately, e.g., functional
qualification testing, and those related tools/techniques are excluded from this research,
including traditional functional testing of authentication and authorization mechanisms to
ensure that authorized users can access the component):

1. Network scanner. A network scanner identifies network components (nodes)
and network connections (ports) by actively interacting with other network
components on the network. Using a network scanner is often a first step in
using other tools, such as network vulnerability scanners and IDSs, and they are
often packaged together.

2. Network sniffer. A network sniffer observes and records network traffic. This
information can then be analyzed to identify unexpected network traffic,
perform trend analysis, and so on.

3. Network vulnerability scanner. A network vulnerability scanner sends network
traffic to a network node, or a service on a network node, to determine whether
it meets security policies and to identify any known vulnerabilities.

4. Host-based vulnerability scanner. A host-based vulnerability scanner examines
a host system configuration for flaws and ensures that the host configuration
meets certain predefined criteria. It may also verify that the audit mechanisms
work. This type of tool can be used both before deployment and during
operations.

5. Host application interface scanner. A host application interface scanner
identifies the various host-based interfaces of applications.

 5-9

6. Application-type-specific vulnerability scanner. An application-type-specific
vulnerability scanner sends data to an application, to identify both known and
new vulnerabilities. It may look for known vulnerability patterns (a.k.a.
weaknesses) and anomalies. This is a group of the following tool types:

a. Web application vulnerability scanner. A web application vulnerability
scanner automatically scans web applications for potential vulnerabilities.
They typically simulate a web browser user, by trawling through URLs and
trying to attack the web application. For example, they may perform checks
for field manipulation and cookie poisoning [SAMATE].

b. Web services scanner. A web services scanner automatically scans a web
service (as opposed to a web application), e.g., for potential vulnerabilities.
[SAMATE]

c. Database scanner. Database scanners are specialized tools used specifically
to identify vulnerabilities in database applications. [SAMATE] For
example, they may detect unauthorized altered data (including modification
of tables) and excessive privileges.

7. Fuzz tester. A fuzz tester provides invalid, unexpected, or random data to
software, to determine whether problems occur (e.g., crashes or failed built-in
assertions). Note that many scanners (listed above) use fuzz testing approaches.

8. Framework-based fuzzer. A framework-based fuzzer creates inputs and
observes results, as with traditional fuzzing, but instruments the underlying
framework to help identify and select what inputs would be most relevant to
test.

9. Negative testing. For the purpose of this paper, negative testing is a technique
that includes, in the regression test suite, many tests that should fail if the
security mechanisms work properly. This is not a tool, but a test-case-
generation criterion for existing test tools. A simple example of negative testing
is a test that tries to use a seven-character password for a system that requires at
least an eight-character password.

10. Digital forensics. Digital forensics tools are tools that support “the use of …
methods toward the preservation, collection, validation, identification, analysis,
interpretation, documentation and presentation of digital evidence … for the
purpose of facilitating or furthering the reconstruction of events found to be
criminal, or helping to anticipate unauthorized actions shown to be disruptive to
planned operations” [Palmer 2001].

11. Intrusion Detection System (IDS)/Intrusion Prevention System (IPS). An IDS
monitors network or system activities for malicious activities or policy

 5-10

violations and reports them. An IPS also monitors, but instead of just reporting
activities or violations, it actively prevents or remediates them. This paper
considers IDS/IPS a single tool type. Note, however, that an IDS/IPS can be
implemented in one of two ways (a tool can combine both of these approaches
in a single product):

a. Network-based IDS/IPS. A network-based IDS or IPS monitors network
traffic to perform its monitoring, prevention, and/or remediation for
malicious activities or policy violations.

b. Host-based IDS/IPS/Integrity checker. A host-based IDS, IPS, or integrity
checker monitors data other than network traffic (such as files, registry
values, and program input/output) for malicious activities or policy
violations.

12. Automated detonation chamber (limited time) automatically isolates a program
(including running multiple copies in virtual machines), executes it, detects
potentially malicious or unintentionally vulnerable activities, and then reports
its findings prior to the software’s deployment. In contrast, we use the broader
term “monitored execution” to refer to broader processes that use many
tools/techniques (including manual techniques) to isolate software and detect
malicious activities. It is often useful to run software in isolation (to limit
damage), but in this case the software is run for some limited time to analyze
the software’s behavior. Previous versions of this paper called this “automated
monitored execution (limited time).”

13. Forced path execution. Forced path execution runs a program and forces
execution of all (control flow) paths, even if the test inputs would not normally
cause it to do so, and monitors what happens to detect possible undesired
behavior.

14. Firewall. A firewall limits network access based on a set of rules. A firewall
can be network-based (e.g., used as a gateway into a network) or host-based
(e.g., limit access between one host and a network). They typically check traffic
against signatures and anomalies. This paper considers firewall a single tool
type, but there are at least two variants of firewall:

a. Network firewall. This limits access at the network level.

b. Web application firewall. A web application firewall examines network
traffic at the web application level to detect and/or limit damage. Its deeper
inspection than that of typical network firewalls or IPSs can protect web
applications/servers from web-based attacks that IPSs cannot prevent.

 5-11

15. Man-in-the-middle attack tool. This type of tool attempts to intercept and
perform a man-in-the-middle attack on the application. This can be at the
network level, or in lower-level application communication protocols.

16. Debugger. A debugger is a tool that enables observation and control of a
program under execution. This can include the ability to execute the program
step by step, and to observe internal states and results.

17. Fault injection. These techniques insert faults into software to enable better
testing. This is a group of the following tool types:

a. Source code fault injection. “Source code fault injection tools provide a
mechanism through which source code can be instrumented to induce the
code to follow control paths that would be otherwise difficult to test for.”
[BAH 2009]

b. Binary fault injection. “Binary fault injection tools provide mechanisms
through which safety- or security-related faults can be sent to the application
while it is running… Unlike source code fault injection, binary fault
injection does not require knowledge of the application’s source [code].”
[BAH 2009]

18. Logging systems. A logging system records events, and their times, to provide
an audit trail that can be used to understand software activity and diagnose
problems. The “syslog” service is an example. This information may be sent to
a Security Information and Event Management (SIEM) system.

19. Security Information and Event Management (SIEM). “SIEM technology
provides real-time analysis of security alerts generated by network hardware
and applications.” [Dr. Dobbs 2007]

C. Hybrid Analysis

The following are hybrid analysis tool/technology types:

1. Test coverage analyzer. Test coverage analyzers are tools that measure the
degree to which a program has been tested (e.g., by a regression test suite).
Common measures of test coverage include statement coverage (the percentage
of program statements executed by at least one test) and branch coverage (the
percentage program branch alternatives executed by at least one test). Areas
that have not been tested can then be examined, e.g., to determine whether more
tests should be created or whether that code is unwanted.

2. Hardening tools/scripts. This type of tool modifies software configuration to
counter or mitigate attacks, or to comply with policy. In the process, it may
detect weaknesses or vulnerabilities in the software being configured.

 5-12

3. Execute and compare with application manifest. Run an application with a
variety of inputs to determine the permissions it tries to use, and compare that
with the application permission manifest.

4. Track sensitive data. Statically identify data that should not be transmitted or
shared (e.g., due to privacy concerns or confidentiality requirements), then
dynamically execute the application, tracking that data as tainted to detect
exfiltration attempts.

5. Coverage-guided fuzz tester. Use code coverage information to determine new
inputs to test.

6. Probe-based Attack with Tracked Flow. Observe normal behavior while
tracking data and control flows within the program (possibly through several
tiers), send probing inputs to determine patterns of behavior that might indicate
a potential vulnerability, then based on these patterns, perform simulated attacks
to identify actual vulnerabilities.

7. Track Data and Control Flow. Track data and control flows from inputs and
other data sources to data sinks, and report when rules (predefined or user
defined) are triggered indicating a potential vulnerability.

D. Advantages of Combining Tools and Techniques

As shown in Appendix E, the Software SOAR Matrix, no one type of tool or
technique can address all possible technical objectives. Some tool/technique types only
address one or a few specific technical objectives, but are highly effective for that scope.
Those that have broader applicability may have challenges (e.g., some can be more costly
or require deeper expertise). Thankfully, static, dynamic, and hybrid analysis tools and
techniques can be combined to alleviate some of these limitations.

Automated tools and manual techniques are often interleaved to achieve a higher-
quality evaluation. For example, a human may analyze the results of a source code
weakness analyzer and modify the tool configuration to reduce the number of false
positives. Similarly, when applying a framework-based fuzzer, the tool may
automatically generate many inputs for testing, yet a human may intervene and provide
specific inputs to guide the testing (to increase test coverage).

It is often useful to combine multiple types of tools and techniques, and in many
cases it is useful to combine multiple tools of the same tool type. Almost all tools have
many false negatives (missed reports). For example, [CAS20111] examined many source
code weakness analyzers and found that any one tool tends to find a minority of the
vulnerabilities of an application, even for just the types of vulnerabilities the tool is
designed to find.

 5-13

Figure 5-1. Conceptual illustration of using multiple tools and techniques

Figure 5-2 is a conceptual illustration of the advantages of using multiple tools and

techniques, particularly when they use different approaches. The arrows represent
potential risks, including exposed vulnerabilities in the software, and the screens
represent tools and techniques applied by a project. No one tool or technique addresses
all technical objectives, and almost all only find a fraction of the vulnerabilities and other
issues they address. Thus, applying multiple tools and techniques is more helpful. Each
tool or technique contributes to meeting technical objectives (and thus reducing overall
risk).

Note that even when applying multiple tools and techniques there is no guarantee
that all technical objectives (e.g., vulnerability removal) will be perfectly achieved, so
there is a still need to monitor operational systems, counter active attacks, and
respond/recover. However, if software is extremely vulnerable, such monitoring,
countering, and response/recovery is difficult to achieve, so even imperfect removal of
vulnerabilities is worthwhile.

E. Processes to Combine Tools and Techniques

There are various ways to combine tools and techniques. Processes to combine
different types of analysis include monitored execution (aka “detonation chamber”), SwA
correlation, penetration testing (aka “pen testing”), audit processes, problem/bug/incident
report analysis, and assurance case development. For our purposes, these are not
considered tools or techniques. Instead, these are larger processes that may use many of
these tools and techniques. These larger processes may also meet multiple technical
objectives, as discussed below.

 5-14

1. Monitored Execution

Monitored execution (aka using a “detonation chamber”) is a process that runs
software (the target of evaluation (TOE)) in an isolated system to detect suspicious
activity. This paper discusses, as a specific approach, using an automated detonation
chamber for a limited time. However, there are other ways to perform monitored
execution. Monitored execution can combine many different tools and (manual)
techniques, and it can be applied continuously or for an extended period of time. Note
that monitored execution may be conducted during development, sustainment, or
operations. In all cases, users of the monitored execution process isolate the software and
then attempt to detect problems while executing it, so when applying this approach
consider:

1. Isolation. Users of this process may use various approaches to isolate the TOE.
They may choose software-based isolation approaches such as sandboxes,
wrappers, debuggers, or virtual machines. Alternatively, users may install the
TOE on a “real” but isolated system and later uninstall the software (often by
restoring the system to a “known good” state). The latter approach is called a
“sacrificial installation” and can be useful if there is concern that the TOE
contains malicious software that detects isolation mechanisms (e.g., counter-
debugger or counter-virtual machine mechanisms) and behaves differently
under them. A challenge for sacrificial installations is ensuring that all
malicious software has truly been erased (e.g., from computer and peripheral
firmware).

2. Detection. Users of this process may use various tools and techniques to detect
problems (including unexpected changes, unexpected behavior, or unexpected
results). Examples of network-based tools include network-based IDSs and
network sniffers. Examples of host-based tools include integrity checks of files,
registry entries, disk boot blocks, host-based IDSs, and so on.

Again, note that we use the term “automated detonation chamber (limited time)” to
refer to a specific tool type that automatically isolates a program and/or data (including
running multiple copies in virtual machines), executes/processes it, detects potentially
malicious or unintentionally vulnerable activities, and then reports its findings (typically
prior to the software’s deployment). In contrast, we use the broader term “monitored
execution” where a variety of tools and/or techniques are combined to perform isolation,
detection, and analysis. A monitored execution process may use automated monitored
execution (limited time) as part of its larger process.

2. SwA Correlation

SwA correlation is the process of correlating the results of multiple SwA tools and
techniques. This can be done manually or through a SwA correlation tool; SwA

 5-15

correlation tools have the advantage of being much faster at larger scale. Other terms for
SwA correlation tools include “application vulnerability management tool” and “software
vulnerability assessment tool.” Examples of SwA correlation tools include CodeDX
(from Secure Decisions), ThreadFix (from the Denim Group), SonarQube (from
SonarSource), and TOIF (from KDM Analytics). An ideal SwA correlation tool would
support many types of tools and techniques (e.g., static, dynamic, and hybrid), a large
number of common tools, and perform the following functions:

 Aggregation – Collects and displays all results from automatic tool scans and
manual techniques

 Normalization – Interprets the semantics from each tool/technique and maps
them to a normalized flaw type or CWE

 De-duplication – Groups the same weaknesses reported by multiple
tools/techniques into one finding

 Prioritization – Automatically assigns a severity level to individual and grouped
findings

 Weakness Location Display – Provides a full context display of the discovered
weakness in the context of the rest of the code

3. Penetration Testing

Penetration testing is “A test methodology in which assessors, typically working
under specific constraints, attempt to circumvent or defeat the security features of an
information system” [CNSS 4009]. In short, penetration testing performs a simulated
attack.

4. Audit Processes

Audit processes are the “independent review and examination of records and
activities to assess the adequacy of system controls and ensure compliance with
established policies and operational procedure” [CNSS 4009]. Audit processes can
leverage firewalls, IPSs, and logging systems to extract relevant information for
assurance analysis. The information can be synthesized and analyzed to identify
characteristics that tie into technical objectives.

5. Problem/bug/incident report analysis

Problem/bug/incident report analysis is examining the problem reports, bug reports,
incident reports, and related information to identify overall problems and trends.

 5-16

6. Assurance Case

An assurance case is “a documented body of evidence that provides a convincing
and valid argument that a specified set of critical claims regarding a system’s [security]
properties are adequately justified for a given application in a given environment”
[IATAC 2007]. By itself, an assurance case is not a tool or technique in the sense we
have defined these terms. Instead, an assurance case is a way of organizing evidence
(some of which may be extracted using tools and techniques), through various arguments,
to justify a set of claims.

F. Excluded Tools and Techniques

We have excluded these categories of tools and techniques as being out of scope for
this paper:

1. General-purpose software test tools and test frameworks. Having an automated
test framework is extremely important for software reliability. A good
automated test suite is also an important aid for security, because it enables
projects to quickly update vulnerable components. Modern systems typically
include a vast amount of reused software. If a vulnerability is found in a
component (say using an origin analysis tool), a good automated test suite can
enable rapid updating of the component and redistribution of the updated
system. However, while this category of tool is related to the focus of this
paper, they are different enough that we have excluded them. We do include
some related tools or techniques:

− Test coverage measurement tools. These help measure the quality of the test
suite.

− “Negative” testing, that is, tests to ensure that the system does not do what it
is not supposed to do (e.g., that the system rejects invalid security
certificates). Strictly speaking, a good automated test suite would simply
include such tests. However, many test suite developers fail to include these
kinds of important security tests, so we specifically list them as a
tool/technique.

2. Combinatorial testing and other related mechanisms for selecting a (relatively)
minimal set of test cases that meet certain criteria. Examples include
Automated Combinatorial Testing for Software (ACTS)8 and covering arrays.9

8 http://csrc.nist.gov/groups/SNS/acts/index.html
9 http://www.jmp.com/support/help/Covering_Arrays.shtml

5-17

3. Threat intelligence. Gartner defines threat intelligence as “evidence-based
knowledge, including context, mechanisms, indicators, implications and
actionable advice, about an existing or emerging menace or hazard to assets that
can be used to inform decisions regarding the subject’s response to that menace
or hazard.” [Lee2014] This information can indirectly guide how to efficiently
identify vulnerabilities, or it may suggest the technical objectives to select.
However, since this is not particularly focused on analyzing specific software,
we have excluded this area from this paper.

Although these may be very useful to some programs, we have excluded them from
this paper because they are out of its scope.

6-1

6. Software Component Context

A TOE often consists of different types of software components with different
characteristics that require distinct handling. Thus, the set of technical objectives, and/or
the applicable tools and techniques, may be different as well. The following subsections
identify some general factors that shape the context, and then briefly list the software
component contexts provided in the PPP outline template that may significantly affect the
context. Other factors may be relevant as well.

A. General Factors

Factors that shape the context include:

 Mission criticality. Is the component critical per a criticality analysis? This
decision must be based on the mission and environment.

 Critical program information (CPI). Is the component, or some of its
technology, considered CPI?

 Amount of custom development. Is the component considered custom
(developmental), off-the-shelf (OTS), or a mixture? OTS can include
government off-the-shelf (GOTS) or commercial off-the-shelf (COTS). The
term COTS includes nearly all proprietary software and open source software.

 Information availability. What information is available on the software; in
particular, is source code available? Is enough information available that the
software could be modified and rebuilt? This is important since several
tools/technique types require source code, or even the ability to make changes.
More information is often available for custom software, but this is not always
true.

 Technologies used. What technologies are being used to implement the
component, for example, what programming languages and platforms are being
used? For example, binary analysis tools are irrelevant for programming
languages implemented by interpreters. Many tools work on only specific
programming languages. Many other tools can only be applied to specific types
of applications, such as web applications, mobile applications, or embedded
applications. Some tools can be applied to only specific platforms, such as tools
that can be applied to only Windows, Linux, or Android mobile applications.

 6-2

 Supply chain exposure (per threat analysis). Is the supplier perceived as risky, is
there enough visibility into the supplier and their supply chain to determine risk.
How well is the supplier protected from external malicious influences?

 Operational or developmental usage. Will the software be operationally
deployed, or will it be used in-house for development, test, etc.?

B. PPP Contexts

“Program Protection Plan Outline & Guidance” [DASD(SE) 2011], section 5.3.3
identifies the following software component contexts, where “developmental” means
“custom”:

 Developmental and Operational:

− Developmental CPI,

− Developmental Critical Function,

− Other Developmental,

− COTS CPI and Critical Function,

− COTS (other than CPI and Critical Function) and non-developmental items
(NDI).

 Development environment:

− (C) Compiler,

− Runtime libraries,

− Automated test system,

− Configuration management system,

− Database.

More information is available in [DASD(SE) 2014].

7-1

7. Program Protection Plan Roll-up

The plans for vulnerability analysis, including information on the planned tools and
techniques for analyzing software, can be rolled up (summarized) as part of a PPP as
described in [DASD(SE) 2011]. In particular, the PPP table “Application of Software
Assurance Countermeasures” can be viewed as a roll-up summary.

As noted in [DASD(SE) 2011], “Program Protection is the integrating process for
managing risks to advanced technology and mission-critical system functionality from
foreign collection, design vulnerability or supply chain exploit/insertion, and battlefield
loss throughout the acquisition lifecycle. The purpose of the PPP is to help programs
ensure that they adequately protect their technology, components, and information….
The process of preparing a PPP is intended to help program offices consciously think
through what needs to be protected and to develop a plan to provide that protection.”

The PPP includes, and is affected by the results of, the criticality analysis and threat
analysis; these help define the software context and focus the analysis. The results of
various analysis tools and techniques provide inputs to vulnerability analysis. The
vulnerability analysis also includes information about processes and people (individuals
and organizations) as appropriate. These are all rolled up into the overall PPP structure.

Note that the PPP “Application of Software Assurance Countermeasures” divides
software into three major PPP categories:

 Development process. This covers custom software developed for use in an
operational setting.

 Operational system. This covers off-the-shelf (OTS) software developed for use
in an operational setting.

 Development environment. This covers developed software not intended for
deployment in an operational setting, e.g., the development, sustainment, or test
environments.

Since different programs may choose to select different tools and techniques, the list
of tools and techniques that should be rolled up will vary. However, nearly all of the PPP
template categories can be filled in with information based on these tools and techniques.

Table 7-1 lists the PPP categories in [DASD(SE) 2011], identifies the type of PPP
category and then identifies which tool/technique types can be used to provide this
information (where appropriate). PPP categories may be tool roll-ups (which summarize

 7-2

information from certain kinds of tools), objective roll-ups (which summarize
information from certain technical objectives), or information roll-ups (which provide
information about the software under evaluation, e.g., if there is source code available).

Table 7-1. PPP Category Roll-ups

PPP

Category

PPP category

information roll-up

type Static Dynamic Hybrid

Static Analysis Tool/technique All static analysis tools,
e.g., Warning flags,
Source code quality
analyzer, Source code
weakness analyzer
(SCWA), context-
configured SCWA, …

- -

Design Inspect Tool/technique Human review,
knowledge extractors

Code Inspect Tool/technique Human review, Warning
flags, Source code
quality analyzer, Source
code weakness analyzer
(SCWA), context-
configured SCWA, …

CVE Objective All already-known
vulnerabilities

All known
vulnerabilities

All known
vulnerabilities

CAPEC Tool/technique Attack modeling

CWE Objective All All All

Pen Test Tool/technique Selective use Comprehensive Selective use

Test Coverage Tool/technique - Fuzz testing,
Application-
specific
vulnerability
scanners

Test coverage
analyzers

Failover
Multiple
Supplier
Redundancy

Tool/technique Human review General testing
(for interop/
replace),
negative testing

Fault Isolation Tool/technique Component isolation Fault injection

Least Privilege Objective Focused manual spot
check, configuration
checkers, knowledge
extractors

IDS, Functional
test

Access control
rules and
enforcement

System
Element
Isolation

Objective Focused manual spot
check, configuration
checkers, knowledge
extractors

IDS, Functional
test

Access control
rules and
enforcement

7-3

PPP

Category

PPP category

information roll-up

type Static Dynamic Hybrid

Input checking/
validation

Objective Warning flags, Source
code quality analyzer,
Source code weakness
analyzer (SCWA),
context-configured
SCWA, …

Application-type-
specific
vulnerability
scanners, fuzz
testing, negative
testing

Test coverage

analyzers,

host-based
system
scanner

SW load key Objective (combining
Software delivery
integrity and Anti-
tamper)

Digital signature check Anti-tamper

[Development
tool] Source

Information (Helps determine what
analysis tools can be
used)

(Helps
determine what
tools can be
used)

[Development
tool] release
testing

Objective

Generated
code
inspection

Objective Human review -
Generated code
inspection;
binary/bytecode simple
extractor; Source code
weakness analyzer;
binary/bytecode
weakness analyzer;
knowledge extractor

Host-based IDS;
Web application
vulnerability
scanner

Test coverage
analyzers

Note that DAG chapter 13 [DAG] explains “Failover Multiple Supplier
Redundancy” by stating that “Identical code for a failed function will most likely suffer
the same failure as the original. For redundancy in software, therefore, a completely
separate implementation of the function is needed. This independence reduces the
probability that the failover code will be susceptible to the same problem.” Although this
approach can be effective in hardware, experiments have shown that multiple in-line
components at run-time do not provide the expected level of reliability in software
[Knight 1986]. This approach does not necessarily, however, require multiple in-line
components at run-time. It can be implemented by applying open systems approaches,
that is, using open standards as interfaces so that a module can be replaced if necessary in
some future release (e.g., because it is a malfunctioning, malicious, excessively
expensive, etc.). If the program uses an open systems approach, it will need to perform
testing with multiple implementations to ensure that multiple suppliers can be used in the
future.

8-1

8. Application

This section provides recommendations on how to apply the process recommended
in this document. In particular, this section provides tips on selecting technical objectives
and selecting combinations of types of tools and techniques.

A. Selecting Technical Objectives

To select technical objectives, first consider the missions that the system/component
supports and the role it plays. In particular, what is the impact of failure or subversion on
the mission(s)? If the information the system or component processes loses its
confidentiality or integrity, what is the impact? Who might attack the system, and with
what level of resources? The goal is to estimate the likelihood of attack, the probability
of success, and the resulting impact if there is no change to the development process and
then to select changes to manage those risks.

First, decompose the system or component into smaller components until their
differences are not distinct for analysis. This can help focus effort on the parts that
matter most. Then, identify critical components (which may merit additional analysis).

For each component, consider the following:

1. Consider what kind of component it is.

a. Is it a server-side web application, embedded, or something else? If it is a
server-side web application or embedded, consider adding all rows selected
under the appropriate “filter for context” column.

b. Is it a critical component (as determined by a criticality analysis)? What
will be the impact if it fails or is subverted? If the impact is high, then
typically there will be more technical objectives and more tools and
techniques to address them, and it will have a higher priority.

2. Identify the most common kinds of vulnerabilities that apply to this software,
and add countering them to the list of technical objectives. Examples of these
common vulnerabilities include buffer overflows and SQL injections. If the
software already exists and extensive data about its previous vulnerabilities has
been collected, use that data (this data would typically be collected by
combining past analyses and operational reports). Otherwise, use lists of
common kinds of vulnerabilities for that kind of software and platform. For

 8-2

web applications, a widely used list is the Open Web Application Security
Project (OWASP) top 10. Otherwise, a common list to use is the SANS/CWE
top 25.

3. Examine the technical objective categories (listed below), to determine which
(other) areas matter for that system’s purposes. Examples of these categories
include “provide design and code quality” and “counter unintentional-like
known vulnerabilities.” Note that many of the common kinds of vulnerabilities
to be countered, identified in the previous step, will already be identified as part
of the technical objective category “counter unintentional-‘like’ weaknesses.”

4. Prioritize. Where necessary, reduce the objectives. This should be in
consultation with all stakeholders, including the authorizing office (AO)
(formerly called the Designated Approving Authority (DAA)).

When examining the 10 topmost technical objective categories (as described above),
consider the following:

1. Provide design and code quality: Most systems will want to include this as a
technical objective. Low quality tends to lower security and make maintenance
more expensive. In many cases, where source code is available this would
prompt selection of a source code quality analyzer.

2. Counter known unintentional-like vulnerabilities: Systems that incorporate
third-party components (which today is nearly all systems) should include this
technical objective. Indeed, most systems today are predominantly
implemented using third-party components, so in most systems this would be an
important technical objective.

3. Ensure authentication and access control: Systems that implement
authentication and access control should include these as appropriate. Least
privilege, in particular, can reduce the impact caused by an attacker who finds a
vulnerability.

4. Counter unintentional-“like” weaknesses. In particular:

a. If you are using C, C++, or assembly programming languages, you should
include the technical objectives for “buffer handling.” Buffer handling
errors often lead to vulnerabilities, and these languages do not provide
automatic protection against them. Note that choosing “safer languages”
can essentially eliminate these problems.

b. If you are using a database, include the technical objective for countering
“SQL injection.”

8-3

c. The “design error” objective would normally be included by any system as a
technical objective.

5. Counter intentional-“like”/malicious logic. Determine the likelihood that a
custom or third-party component might have embedded malicious logic and its
impact, and manage where necessary. For custom development, many
organizations limit themselves to cleared personnel, as a risk-reduction
mechanism. Note that few tools and techniques address unknown malicious
logic.

6. Provide anti-tamper and ensure transparency. If your program requires it,
identify anti-tamper as a technical objective. Transparency is the ability to
easily examine in depth a particular component; transparency of third-party
components can be valuable for supporting risk-reduction measures, but
requiring it can reduce the number of available components (since some
suppliers will be unwilling to do this).

7. Counter development-tool-inserted weaknesses. Development tools can
themselves insert weaknesses. These are important to consider, but only if more
easily accessed attacks are addressed.

8. Provide secure delivery. This should normally be included. This would
typically prompt selection of digital signature verification.

9. Provide secure configuration. This should normally be included.

10. Other. These should be included in the rare cases in which they are appropriate,
such as for a mobile device. For example, countering excessive power
consumption should be included where it is important as a security issue, which
is relatively rare (it would only occur if there is concern that an attacker could
force this excessive power consumption on a device with limited power).

B. Selecting Combinations of Tools and Techniques

In general, types of tools and techniques should be selected so that when combined
they cover the important technical objectives. One simple approach is to ensure that at
least one type of tool or technique adequately covers each technical objective (although
having multiple types cover each objective is better). Of course, this requires knowing
what the different types of tools and techniques are, and what they tend to be good for.

Appendix E identifies different types of tools and techniques, and our estimates of
their effectiveness for different technical objectives. Appendix C provides more detail
about the different types of tools and techniques. Appendix E identifies 59 different
types of tools and techniques (as columns), while Appendix C identifies 57 different
types, but this is not a mistake. In a few cases, Appendix E splits the same underlying

 8-4

tool (as identified in Appendix C) into different tool/technique types because the
underlying tool can be used in different ways that produce different results (e.g., source

code weakness analyzer is separate from context-configured source code weakness

analyzer). In addition, Appendix C briefly discusses formal methods/correct by

construction; in practice these are development processes as well as evaluation processes,
and thus they are not within the scope of Appendix E.

Some key aspects of the system affect which tools and techniques can be used. One
is information availability: in particular, do you have (1) enough of the source code to
modify and rebuild it, (2) source code (not necessarily enough to rebuild), or (3) a binary
to examine? Many tools require enough source code to modify and rebuild the software.
Another issue is the programming language(s) used; tools are not necessarily available
for the language(s) used.

There are many ways to combine types of tools and techniques, and much depends
on the technical objectives to be met, the type of software being considered, and the
software component’s context. We suggest that programs without more experience
consider applying at least the following (roughly in order of execution):

1. Appropriate inexpensive tools and techniques. While many have limited
effectiveness, their low cost often makes them attractive, and all of them can
counter some potential vulnerabilities. These include:

a. Simple attack modeling. Note that attack modeling can be done in far more
depth (and be more costly), but simple models of high-level designs can be
done quickly and help identify potential sources of problems.

b. Applying warning flags. Warning flags cost little to add initially, but can be
expensive to add later to an existing project (since repairing reported
problems later on can be expensive). If the software already exists, it is still
possible to add warning flags later, but this requires adding them slowly and
typically requires having a good automated test suite (to ensure that errors
are not introduced with the changes).

c. Traditional virus scanners. These can find only known simple patterns, but
they are very cheap to apply and can counter some trivial attacks.

d. Hardening tools/scripts.

2. Safer languages. If the application is “green field,” then it will have more
freedom to select the programming language(s) to use. The programming
languages C and C++ are valuable when the application must directly interact
with hardware or must have high performance, but they are not memory-safe or
type-safe. Therefore, they do not automatically protect against certain common
errors (e.g., buffer overflows and format string attacks). Many other languages

8-5

are memory-safe and/or type-safe, preventing many problems. Where
appropriate, languages that provide automatic protection from common types of
vulnerabilities should be preferred.

3. Source code quality analyzers. There is now a preponderance of evidence that
higher-quality software (in general) tends to produce more secure software
[Woody 2014]. These kinds of tools are often less expensive than some other
kinds. Higher-quality code tends to be easier to analyze by other tools and
techniques, so quality analyzers can improve their effectiveness.

4. Source code weakness analyzers (where source code is available). Source code
weakness analyzers have the advantage of being able to examine the entire code
base and thus can find vulnerabilities that dynamic-only tools cannot find.

5. Origin analyzer. Most modern software systems are composed of mostly third-
party software components. Therefore, it is important to know when a reused
component has a publicly known vulnerability. This must be continuously
monitored; a component that has no publicly known vulnerabilities today may
have one reported tomorrow.

6. Focused manual spotcheck (e.g., for interface authentication). Performing
detailed manual analysis can be expensive, but it can be less expensive if
focused on specific areas such as ensuring that the external interface requires
authentication where it is needed.

7. Web application scanner (if it includes a server-side web application). Many
web application scanners are available, and these can quickly find some kinds of
vulnerabilities. If the application is a server-side web application, two variants,
“Probe-based attack with tracked flow” and “Track data and control flow,”
might also be appropriate as an alternative.

8. Fuzz testing (fuzz tester, framework-based fuzz tester, and coverage-guided
fuzz tester). Fuzz testing can be useful, especially at first, and especially for
systems that are not covered by web application scanners. If there is a widely
used framework in place, it may be possible to use a framework-based fuzz
tester. Fuzz testing may be used to analyze a specific part of the system (the
external interface) instead of the entire set of software. The newer coverage-
guided fuzz testing tools show great promise for improving the depth of
analysis.

9. Negative testing (include tests that are supposed to fail due to security
mechanisms properly working). All systems should have an automated test
suite; however, many test developers forget to include tests that should fail.
Negative tests can quickly address some technical objectives for authentication.

 8-6

Apple’s “goto fail; goto fail” vulnerability is an example of an important
vulnerability that could have been caught by negative testing [Wheeler2016].

10. Test coverage analyzer. Software systems should include an automated test
suite with good coverage of their custom components. Not only can this detect
problems in the custom code, but it also enables rapid update of third-party
components when a vulnerability has been discovered (since the automated test
suite can be rerun with high test coverage).

11. Digital signature verification. It’s important to ensure that the installed software
is what was sent; digital signature verification is a relatively inexpensive way to
ensure this.

Obviously, this is not a complete list, so projects should consider tailoring this.
Different projects can and should make a different selection of tools and techniques,
depending on their needs. Systems requiring high assurance, for example, would need
more tools and techniques. All of the types of tools and techniques we have identified
have their place. Many newer hybrid tools have great promise; we simply lack
information on their effectiveness to put them in this list. For examples of selecting
combinations of tools, see Chapter 9 (vignettes).

Projects will need to select specific tools of their desired types to address their
technical objectives based on the software context (described in Chapter 6). Tool
selection depends on other factors than software context, including cost, time, and
required level of expertise. It is important to acquire tools and tool licenses consistent
with their intended use. In particular, will the tool be used directly by developers or
project testers, or will it be used by third-party auditors/evaluators? Some tools or tool
licenses are intended for only developers, or only third-party auditors/evaluators, and
may be difficult to repurpose. Also, some tools require Internet access and/or uploading
of software source code to an external party; that may be inappropriate for some projects.

In some cases, it may not be possible to achieve the desired confidence. For
example, if a component is binary-only or services-only, and the suppliers’
trustworthiness is uncertain, it may be impractical to use tools and techniques to manage
the risks. In those cases, other approaches for managing risks (e.g., by improving
transparency) may be necessary.

As discussed in section 5.D, it is often useful to combine multiple types of tools and
techniques, and in many cases it is useful to combine multiple tools of the same tool type.
Almost all tools have many false negatives (missed reports). Thus, applying multiple
tools and techniques is more helpful. Each tool or technique contributes to meeting
technical objectives (and thus reducing overall risk).

8-7

Existing projects will normally not want to add all tools at once, and certainly not at
their maximum settings for detecting problems. Instead, existing projects may select a
larger set, but it is usually more practical to gradually add tools and techniques, beginning
with relatively easy settings.

9-1

9. Vignettes

This chapter briefly illustrates the first steps of the process described in this paper.
These steps are identifying the software component context, selecting technical
objectives based on that context, and then selecting tool/technique types to address those
technical objectives.

The vignettes are based on examples drawn from OTS proprietary software, OTS
open source software, custom software, and OTS mobile applications. They omit many
details in order to focus on the overall approach. They also intentionally have short lists
of technical objectives; many projects might have more objectives, but this would
typically require the use of more tool/technique types to counter and would obscure the
vignette. A specific program might make different choices based upon its unique
circumstances; the purpose of this section is to briefly illustrate the process.

A. OTS Proprietary Software Component

The context of this vignette is a program considering the use of OTS proprietary
software for which source code is not available. The fact that source code is not available
is important because some tool/technique types require access to the source code. (Note
that source code is available for some proprietary software.) We will assume we do have
the software’s bytecode as a .class file (e.g., perhaps it is in Java). For the purpose of this
vignette, the component is not a critical component and is part of a server-side web
application that is accessible through a network interface. We will focus here on
identifying the component’s technical objectives, and then the tools/techniques to meet
those objectives.

1. Technical Objectives for OTS Proprietary Vignette

Given this context, we must identify the technical objectives based on the larger set
given in Chapter 4. We apply the approach described in section 8.A, where we first:

1. Consider what kind of component it is. This component is part of a server-side
application, so we should consider adding all rows applicable to one as
identified in the appropriate “filter for context.”

2. Identify the most common kinds of vulnerabilities that apply to this software,
and add countering them to the list of technical objectives. Let us assume that
the project does not have extensive data about its previous vulnerabilities. In
that case, since this is a web application, the OWASP top 10 is one of the more

 9-2

applicable lists of common kinds of vulnerabilities. This will emphasize some
technical objectives, such as SQL injections (which are part of the larger
objective to counter unintentional-like weaknesses).

3. Examine the 10 technical objective categories to determine which (other) areas
matter for that system’s purposes.

When examining the 10 topmost technical objective categories, we consider the
following:

1. Provide design and code quality. This is desirable, but given a proprietary
component, we will often not have the information necessary for tools to meet
this technical objective. We might choose to assume that this will be met based
on the supplier’s reputation, instead of trying to use tools or techniques to
determine this. Thus, we will not include this technical objective.

2. Counter known unintentional-like vulnerabilities. We know these are common
attack vectors, so this is likely to be useful. We will include this technical
objective.

3. Ensure authentication and access control. We will assume this is merely a
component of a larger system that addresses these, so we will not include this
technical objective.

4. Counter unintentional-“like” weaknesses. We will assume that the component
is not C or C++ (it is provided as a .class file). However, since it interacts with
a database, again this suggests that we should at least include countering SQL
injection, which is part of this technical objective.

5. Counter intentional-“like”/malicious logic. We do not want malicious logic in
the code. Ideally, we would counter any such malicious logic, but we know that
trying to address it in all cases is costly. We could decide from the supplier’s
reputation that the supplier is unlikely to intentionally include malicious code;
however, the supplier’s development and delivery process may be sufficiently
sloppy to allow known viruses into the delivered software. Thus, we may
choose to include just the subset of this technical objective for dealing with
known malicious software (that has somehow gotten into the component).

6. Provide anti-tamper and ensure transparency. This project has no special anti-
tamper or transparency requirements, so we will not include this technical
objective.

7. Counter development-tool-inserted weaknesses. Development tools can
themselves insert weaknesses. However, we are not the developers, and it is
difficult to counter these attacks as non-developers. Thus, we will not include
this technical objective.

9-3

8. Provide secure delivery. This should normally be included, so we will include
this technical objective.

9. Provide secure configuration. This should normally be included, however, we
will assume that this particular component has no configuration to perform.
Thus, we will not include this technical objective.

10. Other. These are not relevant in this case, particularly because it is not a critical
component. Thus, we will not include this technical objective.

The last step is to prioritize the technical objectives, in consultation with all
stakeholders. This is not a critical component, so it is more justifiable to drop some
technical objectives after considering cost/risk tradeoffs.

After prioritization and considering cost/risk tradeoffs, we chose the following as
our final technical objectives:

 Counter known unintentional-like vulnerabilities.

 Counter unintentional-like weaknesses. For our purpose, countering
unintentional-like weaknesses will be met if we select tools to address a
majority, if not all, of its relevant subcategories. For example, we need to
address SQL injection.

 Provide secure delivery.

 Counter intentional-“like”/malicious logic with the subset for known malware

(esp. known viruses). Ideally, we would counter unknown malware also, but
that would require much more effort, and so we intentionally limit our
objectives.

2. Tool/technique Types for OTS Proprietary Vignette

We must now select the types of tools/techniques to meet the technical objectives in
this vignette. Tools that require source code should probably not be considered, since no
source code is available.

We first review the types of tools and techniques suggested in section 8.B, with an
eye toward covering the technical objectives we identified in section 9.A.1; the ones we
select are bolded.

1. Appropriate inexpensive tools and techniques.

a. Simple attack modeling. Attack modeling could be applied to the larger
system that the component will be part of, but it is more challenging to
apply it to the component itself built by someone else, so in this vignette we
choose to not do this.

 9-4

b. Applying warning flags. Warning flags typically cannot be changed in OTS
proprietary components, so we will not apply this.

c. Traditional virus scanners. These can find only known simple patterns,
but they are very cheap to apply and can counter some trivial attacks, so we
will use one. This will help us meet the technical objective for countering
“intentional-“like”/malicious logic” in the subset for known malware.

d. Hardening tools/scripts. If there is a pre-existing hardening tool that would
apply, such as a Security Technical Implementation Guide (STIG), this
could be useful. However, for our vignette, we will assume there is no
specific hardening tool or script, and we choose to not create one.

2. Safer languages. We cannot choose the language for a pre-existing component,
so we will not use this.

3. Source code quality analyzers. We do not have the source code, so this does not
apply.

4. Source code weakness analyzers. We do not have the source code, so this does
not apply.

5. Origin analyzer. We could choose to use an origin analyzer that works on a
.class file. This will help us meet the technical objective “counter known
unintentional-like vulnerabilities.”

6. Focused manual spotcheck (e.g., for interface authentication). We do not have
the source code, so this would be extremely expensive to do and typically would
not be worth it, especially since this is not a critical component.

7. Web application scanner. This component can be executed as a server-side
web application, making web application scanners useful, so we choose one.
This will help us meet the technical objective “counter unintentional-like
weaknesses.”

8. Fuzz testing. Web application scanners typically include fuzz testing-like
functionality, so there is less need for a separate fuzz testing tool.

9. Negative testing. Since we do not build the proprietary component, we
typically would not have a test suite. It would be possible to build one, but for a
non-critical component we can choose to not do so.

10. Test coverage analyzer. We do not have the source code, so this is more
difficult to do.

11. Digital signature verification. We can do this, to counter attacks during
delivery. This will help us meet the technical objective “provide secure
delivery.”

9-5

After reviewing the initial list, we determined that there are some additional types of
tools/techniques to more fully cover the technical objectives:

1. Binary static analyzers will be added to increase our ability to meet the
technical objective “counter unintentional-like weaknesses” and the sub-
technical objectives within it. We have already selected web application
scanners, which are a dynamic approach and can miss many vulnerabilities.
Adding this static approach could help find what the other tools miss.

2. Vulnerability scanner will be added to help “counter known unintentional-like
vulnerabilities.” Again, this is a dynamic approach that may help bolster origin
analysis (a static approach), potentially finding problems other tools miss.

As a result, we have selected six types of tools/techniques to cover four technical
objectives; in several cases we have intentionally selected tools to cover technical
objectives multiple times. This is not a mistake; most tools/techniques miss many
problems, so using multiple types of tools will increase the number of vulnerabilities
detected and countered before deployment.

Of course, this is just an example; other tool/technique types could be used in
addition or instead (e.g., network sniffers could be used to monitor execution for a period
of time to try to detect unexpected “phone home” functionality). We would then select
specific tools that implement these tool types and meet our objectives (possibly adjusting
the set of tool types as we learn more), and later apply these tools and report results as the
project unfolds.

B. OTS Open Source Software Component

The context of this vignette is that the program is considering the use of an OTS
open source software (OSS) component. We assume that source code is available (Java
in this case), and this is important since some tool/technique types require source code.
To simplify comparison, we will assume that it is essentially the same as in section 9.A:
That is, the component is not a critical component and is part of a server-side web
application that is accessible through a network interface.

1. Technical Objectives for OTS OSS Vignette

Since its purpose and environment are the same, the technical objectives can end up
being identical to those in section 9.A.1:

 Counter known unintentional-like vulnerabilities.

 Counter unintentional-like weaknesses. For our purpose, countering
unintentional-like weaknesses will be met if we select tools to address a

 9-6

majority, if not all, of its relevant subcategories. For example, we need to
address SQL injection.

 Provide secure delivery.

 Counter intentional-“like”/malicious logic with the subset for known malware.
Ideally, we would counter unknown malware also, but that would require much
more effort, and so we intentionally limit our objectives.

This raises an important illustrative point: technical objectives are essentially a
specific kind of requirement, and thus, are not typically impacted by the licensing
approach, origin of the software, or information available (e.g., whether or not the
customer receives source code). Tools for analyzing the software, however, may very
well be impacted by this.

2. Tool/technique Types for OTS OSS Vignette

We must now select the types of tools/techniques needed to meet the technical
objectives in this vignette. Any of the tool/technique types that we selected in section
9.A are applicable because we have a similar context and the same objectives. The
availability of source code, however, opens up the choice of additional tools. Using such
additional tool/technique types can provide significant information, but it can be a
challenge as well. Source code analyzers often produce a great deal of information that
may or may not be relevant to a specific need; extracting relevant information can be
time-consuming. Another problem is that it can be difficult to compare the results using
source code to another component whose source code is not available. Additional
transparency (through source code) can be helpful because it allows many assertions to
be verified and problems to be found. However, additional transparency does not make it
clear whether the alternatives with less transparency are better or worse.

We first review the types of tools and techniques suggested in section 8.B, with an
eye toward covering the technical objectives we identified in section 9.A.1; the ones we
select are bolded.

1. Appropriate inexpensive tools and techniques.

a. Simple attack modeling. Attack modeling could be applied to the larger
system the component will be part of, but it is more challenging to apply it
to the component itself built by someone else, so in this vignette we will
choose to not do this.

b. Applying warning flags. Warning flags typically can be changed in OSS
components, so unlike the previous proprietary tool case, we can apply this
– and in this case we choose to do so. Note that adding warning flags can be
difficult because the software may produce a large number of warnings

9-7

when new flags are added. But in other cases, it is not a problem or those
messages can be reported back for repair. This will help us meet the
technical objective “counter known unintentional-like vulnerabilities.”

c. Traditional virus scanners. These are designed to find simple patterns in
lower-level code, and they are unlikely to find problems when source code
is available. However, they are so cheap to apply that it does not hurt to use
them. This will help us meet the technical objective for countering
“intentional-“like”/malicious logic” in the subset for known malware.

d. Hardening tools/scripts. If there is a pre-existing hardening tool (e.g., a
STIG) that would apply, this could be useful. However, for our vignette we
will assume there is no specific tool or script, and we choose to not create
one.

2. Safer languages. We cannot choose the language for a pre-existing component,
so we will not use this. We have the source code, but rewriting code to another
language is a major undertaking.

3. Source code quality analyzers. We have the source code, so this could apply,
and we will use it in this case. This will help us meet the technical objective
“counter known unintentional-like vulnerabilities.”

4. Source code weakness analyzers. We have the source code, so this could
apply, and we will use it in this case. This will help us meet the technical
objective “counter known unintentional-like vulnerabilities.”

5. Origin analyzer. We could choose to use an origin analyzer that works on our
source files. This will help us meet the technical objective “counter known
unintentional-like vulnerabilities.”

6. Focused manual spotcheck (e.g., for interface authentication). We do not have
the source code, so this would be extremely expensive to do and typically would
not be worth it, especially since this is not a critical component.

7. Web application scanner. This component can be executed as a server-side
web application, making web application scanners useful, so we will choose
one. This will help us meet the technical objective “counter unintentional-like
weaknesses.”

8. Fuzz testing. Web application scanners typically include fuzz testing-like
functionality, so there is less need for a separate fuzz testing tool.

9. Negative testing. OSS comes with its source code, and typically with a test
suite. It would be possible to add negative tests to that test suite (where
available), but for a non-critical component we can choose to not do so.

 9-8

10. Test coverage analyzer. OSS comes with its source code, and typically with a
test suite. It would be possible to add or use a test coverage analyzer, but for a
non-critical component we can choose to not do so.

11. Digital signature verification. We can do this, to counter attacks during
delivery. This will help us meet the technical objective “provide secure
delivery.”

After reviewing the initial list, we determine that there are some additional types of
tools/techniques to more fully cover the technical objectives. There is no need (unlike
the proprietary OTS case) to add a binary static analyzer, since we have source code
available. However, we might choose other tools, such as:

1. Vulnerability scanner will be added to help “counter known unintentional-like
vulnerabilities.” Again, this is a dynamic approach that may help bolster origin
analysis (a static approach), potentially finding problems other tools miss.

In the approach listed here, many more tools are applied to counter unintentional-
like weaknesses, because with source code available, more tools can be brought to bear.

As a result, we have selected eight types of tools/techniques to cover four technical
objectives. As with the previous case, we have intentionally selected tools to cover
technical objectives multiple times. Using multiple types of tools will increase the
number of vulnerabilities detected and countered before deployment.

Again, this is just an example; other tool/technique types could be used in addition
or instead.

C. Custom Component

The context of this vignette is that the program is considering custom software
development. In this vignette, source code is available (and is sufficient to allow
rebuilding the software), the developers may be directed to make changes, and they
understand the specific intended environment. For the purpose of this vignette, we will
make it similar to the previous vignettes; the component is not a critical component and is
a server-side web application.

1. Technical Objectives for Custom Component Vignette

To simplify comparison, we will start with the list of technical objectives as in
section 9.A.1 and modify it:

 Counter unintentional-like weaknesses. For our purpose, countering
unintentional-like weaknesses will be met if we select tools to address a
majority, if not all, of its relevant subcategories. For example, we need to
address SQL injection.

9-9

 Provide secure delivery.

 Counter Intentional-“like”/malicious logic with the subset for known malware.
Ideally, we would counter unknown malware also, but that would require much
more effort, and so we intentionally limit our objectives.

Note that we have intentionally omitted “counter known unintentional-like
vulnerabilities”; because it is being custom-developed, there will be no already known
vulnerabilities in the software to be created.

We have a different problem with custom components. OTS components must
compete with each other, and this can sometimes encourage quality because low-quality
components are less likely to be repeatedly used (unless something else, like low cost or
vendor lock-in, compensates for this). This does not apply to custom components; there
may have been a bidding competition to develop the component, but there is no
competitive alternative to this component. Thus, we would probably want to also add at
least this technical objective for a custom component. In addition, we could decide that
since we were doing custom development, we would also add this as a technical
objective. This means we would add the following technical objectives:

 Provide design and code quality.

 Counter development tool inserted weakness.

2. Tool/technique Types for Custom Component Vignette

We must now select the types of tools/techniques to meet the technical objectives in
this vignette. All the above tools can be used in sections 9.A and 9.B, but now analysis
results can be tailored for the specific environment. It is easier to direct change in the
software, and developers understand the specific intended environment (making some
manual techniques easier to apply).

We first review the types of tools and techniques suggested in section 8.B, with an
eye toward covering the technical objectives we identified in section 9.A.1; the ones we
select are bolded.

1. Appropriate inexpensive tools and techniques.

a. Simple attack modeling. Attack modeling is easier to apply for custom
components, and it can quickly warn of design issues that could be costly to
fix later. It does not directly guarantee meeting any particular technical
objective, but it can help implement many of them; so it could be a sensible
technique to use in this case. We would use the attack modeling to help
identify all interfaces (information that will be used later).

 9-10

b. Applying warning flags. Warning flags are easy to add initially during
custom development, and can be hard to add later; so adding them
immediately is sensible. This will help us meet the technical objective
“counter known unintentional-like vulnerabilities.”

c. Traditional virus scanners. It is unlikely to find these problems when
custom code is developed. However, they are so cheap to apply that it
doesn’t hurt to use them. This will help us meet the technical objective for
countering “intentional-“like”/malicious logic” in the subset for known
malware.

d. Hardening tools/scripts. Typically, custom code would be pre-hardened
for its purpose, so this would not normally apply.

2. Safer languages. We can choose the language for a custom component, so we
will use this. In particular, we will avoid languages that are not type-safe or
memory-safe when there is no particular reason to use them. This will help us
meet the technical objective “counter known unintentional-like vulnerabilities,”
particularly those involving buffer overflow.

3. Source code quality analyzers. We have the source code, so this could apply,
and we will use it in this case. This will help us meet the technical objective
“counter known unintentional-like vulnerabilities.”

4. Source code weakness analyzers. We have the source code, so this could
apply, and we will use it in this case. This will help us meet the technical
objective “counter known unintentional-like vulnerabilities.”

5. Origin analyzer. An origin analyzer will not really make sense (directly) for
the custom software. It would make sense to apply it to any reused software
that the custom code uses, but we will treat that separately.

6. Focused manual spotcheck (e.g., for interface authentication). We can do a
spotcheck, e.g., to ensure that all interfaces do input validation and require any
necessary authentication and authorization. Note that the attack modeling could
help identify the interfaces. This will help us meet the technical objective
“counter known unintentional-like vulnerabilities,” especially those involving
input validation.

7. Web application scanner. This component can be executed as a server-side
web application, making web application scanners useful, so we will choose
one. This will help us meet the technical objective “counter unintentional-like
weaknesses.”

8. Fuzz testing. Web application scanners typically include fuzz testing-like
functionality, so there is less need for a separate fuzz testing tool.

9-11

9. Negative testing. Since the custom component is not being tested and used in a
variety of other settings, it would be prudent to include negative tests in its test
suite, even if the component is not critical. This will help us meet the technical
objective “counter unintentional-like weaknesses.” In particular, it can help
counter SQL injections (a common concern).

10. Test coverage analyzer. All components need some tests, and it is easy to do
very poor testing without a test coverage analyzer. This will help us meet the
technical objective “provide design and code quality.”

11. Digital signature verification. We can do this, to counter attacks during
delivery. This will help us meet the technical objective “provide secure
delivery.”

After reviewing the initial list, we determined that there are some additional types of
tools/techniques to more fully cover the technical objectives. There is no need (unlike
the proprietary OTS case) to add a binary static analyzer, since we have source code
available. However, we might choose other tools, such as:

12. Vulnerability scanner will be added to help “counter known unintentional-like
vulnerabilities.” Again, this is a dynamic approach that may help bolster origin
analysis (a static approach), potentially finding problems other tools miss.

13. Rebuild and compare will help us meet the technical objective “counter
development tool inserted weakness.” This is by no means a foolproof
countermeasure, but it can help in some circumstances.

In the approach listed here, many more tools are applied to counter unintentional-
like weaknesses, because with source code available, more tools can be brought to bear.

As a result, we have selected 16 types of tools/techniques to cover 5 technical
objectives. As with the previous case, we have intentionally selected tools to cover
technical objectives multiple times. Using multiple types of tools will increase the
number of vulnerabilities detected and countered before deployment.

Again, this is just an example; other tool/technique types could be used in addition
or instead. For example, we could add network sniffers (to monitor execution for a
period of time to try to detect unexpected “phone home” functionality).

10-1

10. Gaps

Our investigation found a number of gaps in analysis tools and techniques that
require further research and investment:

 Finding unknown malicious code. Traditional virus scanners can find many
known patterns (although viruses with metamorphic code are much harder to
detect). Unknown malicious code is difficult to find, since by definition there is
less certainty about the patterns used by yet-unseen attacks. This difficulty is
further escalated by the large size and rapid change of operational software
systems. Even if every tool/technique type identified in this paper were applied,
there would be poor coverage of certain kinds of unknown malicious code (as
shown in the “best applicability” column of Appendix E, Software SOAR
Matrix). There are research efforts and approaches for improving this situation,
such as work to programmatically predict future malicious code evolutions
given existing malicious code, but currently this is a major challenge.

 Integrating different tool results. It is difficult to integrate different types of
tools (e.g., static and dynamic tools), because the kind of information they report
is fundamentally different.10 Integrating tools is valuable because different tools
can identify different issues, so combining them should provide a broader
understanding. Standardizing tool output, to enable correlation and synthesis,
could help. SwA correlation tools now exist to help integrate tool results,
including information from static and dynamic tools, but more work is needed to
improve the correlation tool results.

 Obtaining quantitative data on tools and techniques. There is a general lack of
relevant quantitative data about the true costs, schedule impact, and
effectiveness (in various situations) of specific tools, specific techniques, and
types of tools/techniques. A key aspect is inadequate “ground truth”
information to help make decisions (e.g., what is the actual assurance provided
by an industry-accepted set of metrics?). This lack of quantitative data makes
selecting tool/technique types, and selecting specific tools, much more difficult.
There are some ongoing efforts to quantitatively evaluate tools and obtain some

10 Static analysis tools typically report a sequence of one or more locations in code (be it source, bytecode,
or binary). Dynamic analysis tools typically report behavior, e.g., noting that some given input produced
a specific output. Correlating locations in code with behavioral results can be difficult in larger
programs.

 10-2

semblance of ground truth; the SAMATE and NSA CAS have in particular
worked in these areas. However, more resources are needed to extend and scale
this work.

 Similarly, it would valuable to verify relevant measures of security. Some
measures that were mentioned in our interviews included11:

− “Defect density,” which is the number of (discovered) vulnerabilities divided
by the software size (measured in lines of code or function points);

− “Technical debt,” which can be defined as the expected number of hours
needed to repair an identified issue;

− “Effort density,” which is the technical debt divided by the software size
(measured in lines of code or function points);

However, these measures have the following known issues:

− Tools typically generate false positives. All of the measures above depend
on identifying defects or issues to be repaired; a false positive would make
relevant measures larger than their true values. False positives could be
manually filtered out, but there is an additional cost for doing so.

− Tools typically generate false negatives. This can be partly countered by
using multiple tools, but correlating tool results can be difficult, and this
correlation requires effort.

− Effort estimations can vary as well.

− Different tools (or tool sets) typically produce different results. This can be
partly addressed by using the same tool for a specific decision, but this risks
locking into a single vendor’s tool over time.

 Including contract language in contracts for assurance. Sample contract
language is available that acquisition organizations can choose to insert into
contracts [SwAForum 2012] [Marien 2016]. However, unless contracts actually
include assurance requirements, assurance is unlikely to be delivered.

 Clear legal authority for analyzing proprietary executables for assurance and
compliance. Some analysis approaches can be viewed as performing a kind of
reverse-engineering, yet licenses for OTS proprietary executables often forbid
reverse-engineering. As a result, some interviewees were uncertain whether
they could analyze proprietary executables for the purpose of assurance or

11 There are other relevant measures in the literature as well. For example, the size of the “attack surface”

(the set of ways in which an adversary can enter the system and potentially cause damage) has been
identified as potentially useful [Manadhata 2008].

10-3

compliance. Suppliers of OTS proprietary executables are understandably
concerned about allowing such work, e.g., it might reveal trade secrets. It might
be useful to develop a legal ruling that organizations can analyze proprietary
executables for assurance and compliance when the executables have been
acquired legally. Note that attackers already examine proprietary executables to
look for vulnerabilities.

 Enabling OTS suppliers to attest to assurance-related activities. This attestation
information could then be used as acceptance or preference criteria. Currently
many proprietary software suppliers are unwilling to provide source code or
details of their test process, making many claims difficult to verify. Even when
such data is available, it can be overwhelming to evaluators. An improved
industry consensus-driven set of criteria for certification, backed by a method to
verify that the criteria are met, could help to resolve this problem. It should be
possible to enable suppliers to easily attest the analysis they’ve done in a way
that customers can trust (as opposed to simple self-assertion by suppliers),
beyond what exists today. This may require standardization and/or the use of
trusted third parties. An industry consensus-driven set of criteria for attestation
could help consumers verify that products meet their criteria.

 Supporting dynamic language static analysis. Many current languages
(JavaScript, Python, PHP, etc.) do not use statically typed variables. Since less
information is captured in the source code, static analysis tools have more
difficulty performing analysis, typically resulting in analysis gaps.

 Supporting frameworks. Software frameworks (such as Struts and Spring) can
simplify development. Since software security depends on the framework’s code
and configuration, effective analysis tools must often build in knowledge of the
framework’s behavior. The large number of different frameworks being
leveraged and reused (especially on servers) requires analysis tool authors to
select which frameworks to support, resulting in a lack of support for many
frameworks.

 Analyzing binaries without debug symbols. Programs are often created by
compiling source code into executable files called “binaries.” These binary files
may include “debug symbols” that provide additional information about the
program. Such debug symbols are often very helpful for later analysis
programs. Unfortunately, binaries are often distributed to users without debug
symbols, so analysis programs that depend on debug symbols cannot work as
well (or at all) on such programs. Research could be done to improve program
analysis capabilities when debug symbols are not available.

 10-4

 Handling multiple languages and executables. Large systems are usually
heterogeneous, with multiple languages and multiple executables. Many
analysis tools struggle with such systems because they focus on a smaller set of
languages or have difficulty handling systems with multiple executables.
Supporting a large set of languages is always a challenge, especially since new
ones are developed while legacy languages linger. Systems often include
multiple interacting executables, yet many analysis tools are only designed to
effectively examine one program at a time.

 Assuring development tools. Development, test, and sustainment tools
(including their various plug-ins) can insert unintentional or malicious
vulnerabilities into operational software. These include integrated development
environments (IDEs), version control systems, compilers, interpreters, test
frameworks, and so on. There is some, but relatively little, past work on
countering attacks through these tools. One partial countermeasure is to use
reproducible builds; the “reproducible builds” website12 defines them as “a set
of software development practices which create a verifiable path from human
readable source code to the binary code used by computers.” The diverse
double-compiling (DDC) technique is a known technique for countering the
“trusting trust” attack in which compilers attack software including themselves
[Wheeler 2009].

 Cost-effectively and completely meeting a given technical objective without
exception (e.g., finding all important vulnerabilities, and not just a subset).
Many projects use source code weakness analyzers to identify when source code
meets certain patterns that suggest important weaknesses. Yet studies have
found that such tools do not detect a majority of vulnerabilities [CAS 2012].
Thus, many tools have a large false negative rate. There are various reasons for
this. One is that many tool suppliers are far more concerned about false
positives than false negatives; that is, the commercial world rewards them for
only reporting true vulnerabilities, even if other vulnerabilities are not reported.
Another reason is that the tools often lack important context information
required for accurate analysis, e.g., exactly which data sources are trusted.

 Further improving false positive rates in static analysis tools. Tool suppliers are
incentivized to reduce false positives, but there is still room for improvement.

 Improving tools reports to be immediately understood and actionable. Tool
developers do attempt create reports that help the developer fix potential
problems, e.g., they may attempt to prioritize vulnerabilities, identify specific

12 https://reproducible-builds.org/

10-5

locations, and/or describe specifically how to fix or mitigate the vulnerability.
However, there are still indications that some organizations have difficulty some
using tool reports. Thus, it would be valuable to further improve tool reports,
especially to ensure that they provide immediately-actionable information on
how to fix or mitigate problems they find.

These are not the only general gaps that exist; these are merely more important ones
that we identified in the course of this study.

In the mobile environment, we identified the following additional challenges and
gaps:

 Brief analysis time. There is a widespread expectation that mobile applications
must be evaluated for security within an extremely short time; in many cases
these expectations are measured in minutes, not hours, days, or months13. This
timeframe can apply to either the time between when an application is ready for
deployment and its release on an app store, or the timeframe between when a
user requests the application for their work device and it is available for
installation. The causes of this expectation are unclear; one reason may be that
mobile applications are often updated rapidly, making the results of longer
evaluation times less useful. This is a challenge if seeking in-depth analysis,
especially since in many cases source code is unavailable and an objective is to
identify unknown malicious code.

 Many organizations only provide mobile application analysis using a Software-
as-a-Service (SaaS) model. In this case, any software to be analyzed must be
sent to the external party (the service provider) for analysis. Such services may
be inappropriate to use if the software to be evaluated (or the data that must be
used with it) must never be available to the public (e.g., because it is classified,
proprietary, or specially protected by privacy laws). Additionally, it’s difficult
to determine or verify what a SaaS-only supplier actually does. Some SaaS
suppliers may be very capable, but it is difficult to evaluate them due to this lack
of information. (This not only impacts potential service users, but it also impact
this paper, as it is difficult to comment on services when there is little data
available about them.) See Appendix B.1 for more information about data
availability and its impact on using tools.

 It is sometimes difficult to determine how to characterize some tools. As noted
above, tools are rapidly evolving. In addition, sometimes information is difficult

13 On Android devices there can be many app stores; applications tend to be rapidly available on the
Google Play store. On Apple iOS devices there is a lengthier time between when an application is
submitted and when it is available on the store, but it is still short compared to traditional analysis
timeframes. For more information, see Appendix F.

 10-6

to get, especially when the tool is only available through SaaS. We have tried to
identify major approaches used by tools to divide them into families, in cases
where we could obtain more information. However, some tools combine a
number of approaches that make them challenging to categorize. It may be that
in some cases it would be better to create specialized columns for specific tools,
instead of looking for general categories. Examples of tools that were especially
difficult to categorize are Veracode’s vAI and Kryptowire:

− Vericode’s vAI includes both static and dynamic analysis. In particular, it
identifies a number of red flags and then uses machine learning techniques to
estimate risk level. Thus, it uses a large number of different small simple
analysis techniques, instead of a single primary technique. This tool could
be viewed as focusing on a different approach for combining data, instead of
a different technique for obtaining this data. This was difficult to map using
our tool/technique family; we could have created a new hybrid category but
we believed this would not fully capture the approach.

− Kryptowire also applies several different analysis approaches and combines
their results. These analyses are primarily dynamic, but some are static (e.g.,
it identifies libraries and their dependencies). In addition, the analysis
approach it uses to analyze Android applications is fundamentally different
than the one it uses for iOS applications. On Android they translate to
bytecode and force execution through different paths (bypassing conditions
in code where necessary), an approach we call “forced path execution.” On
iOS they take the unencrypted application and exercise it on a modified iOS
(to see what paths it takes).

 Devices that support mobile communications capability (e.g., 3G or Long-Term
Evolution (LTE)) typically use a separate baseband processor running a separate
real-time operating system (RTOS) and programs that manage everything
related to the radio and often other capabilities as well (e.g., Global Positioning
System (GPS) and Universal Serial Bus (USB)). The baseband processors and
associated software are typically poorly understood, poorly documented, and not
externally peer reviewed. This leaves mobile devices exposed to over-the-air
attacks that may enable total control of the device, yet these attacks may be
poorly countered or mitigated. [Holwerda 2013]. See Appendix F for additional
information.

 It is difficult for users, including those testers who operate as regular users, to
understand what is occurring on their mobile devices. Applications routinely
communicate with each other, but this communication is not obvious to typical
users. Similarly, applications often require privileges, but the impact of granting
them is often poorly understood. This lack of understanding increases the risk to

10-7

users and their enterprises, since users are less likely to notice unexpected
activity on their mobile device.

 Balancing the need between efficiency in operation with separating personal and
professional data. Application data is separated from other applications by
default on both iOS and Android. In many cases there is a need to share (e.g.,
calendars need both personal and professional information), but there are also
many reasons for separation (e.g., because of privacy, intellectual rights,
regulations, preventing unauthorized sharing, etc.). Enterprises want to be able
to delete their data from mobile devices, while users understandably do not want
their personal information deleted.

These gaps would be plausible areas to consider as part of such a research program.

11-1

11. Conclusions

Nearly all modern systems depend on software. Although software enables
functionality, it also poses risks. Unintentional and intentionally inserted vulnerabilities
in software can provide adversaries various avenues through which they can reduce
system effectiveness, render systems useless, or even turn our systems against us.
Unfortunately, it can be difficult to determine what types of tools and techniques exist for
evaluating this software, and where their use is appropriate. DoD PMs, and their staffs,
need information and guidance on how to make effective software assurance (SwA) and
software supply chain risk management (SCRM) decisions, particularly when they are
developing their program protection plan (PPP). DoD policymakers who are developing
software-related policies also need such information.

We propose the following approach for selecting tool/technique types to address
various technical objectives:

1. Select technical objectives based on context,

2. Select tool/technique types to address objectives,

3. Select tools,

4. Summarize selection (e.g., as part of the PPP),

5. Apply and report.

For step 1 we have identified a set of common technical objectives. For step 2 we
have identified a set of tool/technique types, as well as a matrix (in Appendix E) that
shows how the different tool/technique types address different technical objectives. Note
that the different tool/technique types can be grouped into three larger groups: static
analysis, dynamic analysis, and hybrid analysis. We also provide additional information
to support steps 3-5. We believe that analysis should be performed across the lifecycle,
as discussed in Appendix D.

Many gaps exist, as described in Chapter 10. These include finding unknown
malicious code, obtaining quantitative data, analyzing binaries without debug symbols,
and assurance of development tools.

In the mobile environment, there are additional challenges. Many tools are less
mature, simply because the mobile environment is newer and evolving, though we expect
that to rapidly improve. There is an expectation of short analysis time constraints that
preclude many approaches to in-depth analysis. Attempting to counter unknown

11-2

malicious code with minimal time for analysis is a particular challenge. In addition, the
SaaS model makes it difficult to evaluate an evaluation process’ effectiveness, and
constrains what software can be evaluated, yet some tools are only available through a
SaaS model. The widespread use of a Software-as-a-Service (SaaS) model as a sole
evaluation model limits data availability and application to DoD systems

These identified gaps would be plausible areas to consider as part of the research
program identified in the National Defense Authorization Act for Fiscal Year 2014
[NDAA 2014] Section 937.

 A-1

Appendix A.

Resources Used

We used a variety of information sources to develop this document, including
interviews, conference attendance, and written materials. Below we identify the major
sources for the original paper, followed by additional major resources for the mobility
work.

For the first draft of this paper, we conducted a large number of interviews with a
variety of individuals from diverse organizations. These interviews were typically 1 to 2
hours long, and began with these three questions:

1. What technologies, tools, and techniques would you recommend for verifying
software being considered for use? Under what conditions?

2. What is the estimated level of effort, cost, difficulty, gaps, and other practical
aspects of using the tools that a prospective user would want/need to know?

3. What are case examples of how/when to use technologies/ tools/techniques
(e.g., how often/when to scan)?

Our original interviewees were:

1. Government community (other than DoD Services):

− National Institute of Standards and Technology (NIST) (Paul Black, Vadim
Okun, Aurelien “Aurey” Delaitre) – 2012-12-20;

− National Security Agency Center for Assured Software (NSA CAS)
(Andrew Portner (Binary), Nick Valletta (Mobility), Kathy Erno (Source
lead), Rob Stevens (Source), and Jon Spielvogel (Source)) – 2013-01-30;

− Carnegie Mellon University (CMU) (Robert Seacord) – 2012-10-21;

− United Kingdon (Ian Bryant) – 2012-10-29;

− National Information Assurance Partnership (NIAP) (Mark S. Loepker,
Director, CCEVS) – 2013-03-11;

− Office of the Assistant Secretary of Defense for Health Affairs/TRICARE
Management Activity (OASD(HA)/TMA) (John Keane) – 2013-02-06.

 A-2

2. DoD Services:

− Air Force (MSgt William Tooke, Lt. Booth, TechSgt Adams) – 2012-01-29;

− Application Software Assurance Center of Excellence (ASACoE);

− Navy – (Jennifer Guild) – 2013-01-22;

− Army – (George Huber) – 2013-02-01;

− Additionally, IDA led a discussion at DoD Software Assurance (SwA)
Community of Practice (COP), with all services represented – 2012-09-17.

3. Vendors/Suppliers:

− Hewlett-Packard/Fortify – (Jacob West, Director, Software Security
Research) – 2013-01-08,

− VeraCode – (Chris Wysopal, CTO/Co-founder) – 2013-01-17;

− Coverity – (Andy Chou, CTO/Co-founder) – 2013-01-25;

− Electronic Warfare Associates Information and Infrastructure Technologies
(EWA IIT, Steve Clemmons) – 2013-02-13;

− Juniper (David Koretz) – 2013-02-27;

− Tenable (Ron Gula) – 2013-02-20;

− SafeCode/EMC (Dan Reddy) – 2013-03-15;

− IBM (Andras Szakal, Chan Lim, Diana Kelley, Jim Whitmore, Rustin Sides)
– 2013-03-21;

− McAfee (Phyllis Schneck) – 2013-03-27;

− John Viega – 2013-03-27;

− WhiteHat (Jeremiah Grossman, Kyle Rohrs, Philip Diaz) – 2013-04-02.

We are grateful for the time our interviewees gave us. All provided a great deal of
insightful commentary; we include some of their observations in Appendix B, but these
are only some of their insights due to length constraints. Also, please note that while we
used their comments, for the most part none of them have seen this report, and thus they
have not approved of this report. We list their names to acknowledge their contribution,
not their consensus.

We also participated in a number of conferences and workshops:

 NIST SCRM meeting, October 15–16, 2012, Gaithersburg, Maryland;

 Securely Taking On New Executable Software of Uncertain Provenance
(STONESOUP) Principle Investigator (PI) meeting, November 14, 2013;

 A-3

 SwA Working group Sessions – Winter 2012, 27–29 November, McLean,
Virginia;

 Annual Computer Security Applications Conference (ACSAC), December 2–7,
2012 Orlando, Florida;

 RSA1 conference February/March 2013;

 SwA Forum, March 5–7, 2013, NIST, Gaithersburg, Maryland;

 High Confidence Software & Systems (HCSS), May 5–10, 2013.

We also examined a number of written works. Some of the especially-useful ones
were:

 Information on Application Software Assurance
Center of Excellence (ASACoE)’s process [Tooke 2012],

 DoD key documents, including DoD Instruction 5200.44 [DoDI 5200.44] and
the Defense Acquisition Guidebook [DAG],

 SAFECode material, e.g., [SAFECode 2012],

 Open Group’s Open Trusted Technology Provider Framework (O-TTPF) [Open
Group 2011],

 Booz Allen Hamilton’s Software Security Assessment Tools Review [BAH
2009],

 National Security Agency (NSA) Center for Assured Software (CAS)’s reports,
e.g., [CAS 2012].

Useful websites included:

 Common Weakness Enumeration (CWE), http://cwe.mitre.org,

 Software Assurance Metrics And Tool Evaluation (SAMATE),
http://samate.nist.gov/Main_Page.html,

 Building Security In Maturity Model (BSIMM), http://bsimm.com/.

We later extended the report by looking specifically at mobility issues.

People we interviewed when we were specifically focused on mobility issues
included:

 Veracode (Chris Wysapal), 2013-10-28,

 NIST SAMATE (Paul Black), 2013-10-29,

1 RSA stands for (Ron) Rivest – (Adi) Shamir – (Leonard) Adleman, but this is rarely expanded.

http://cwe.mitre.org/
http://samate.nist.gov/Main_Page.html
http://bsimm.com/

 A-4

 NSF (Jeremy Epstein), 2013-10-30,

 George Mason University (Sam Malek), 2013-10-30,

 NIST mobility (Jeff Voas), 2013-11-01,

 George Mason University (Angelos Stavros), 2013-11-01,

 Symantec (Paul Sangster), 2013-11-12,

 eVault (Wyllys Ingersoll, Security expert and iOS application developer), 2013-
11-20,

 Apple (John DiTomasso), 2013-11-21,

 FireEye (Eric O’Brien), 2013-11-22,

 Defense Advanced Research Projects Agency (DARPA) (Tim Fraser), 2013-11-
26,

 DARPA (Doran Michels), 2013-12-12.

We also received email comments from David Wagner, a well-known security
expert.

We also reviewed a number of documents (including program documentation)
related to mobility, particularly those relating to security or government use. These
included mobility-related documents from the NSA CAS, Defense Information Systems
Agency (DISA) mobility Security Technical Implementation Guides (STIG), Department
of Homeland Security (DHS) “carwash” information, information on the DARPA
Transformative Apps (TRANSAPPS) program, information on NIST’s evaluation
process, iOS security documentation, and Android security documentation [DISA STIG
2013], [DARPA 2013], [Walker 2013], [CAS 10x10 2013], [CAS Survey 2013], [CAS
Vuln 2013], [Android 2013], [Apple 2012], [NIST SP-163], [NIST SP 800-124rev1
2013], [NIST 2012], [NIST 2013].

Many people observed that different tools and techniques were better for different
objectives. In particular, Andy Chou and the NSA CAS emphasized the value of
comparing tools and techniques with differing objectives, and this was an inspiration for
the development of our matrix. We thank them for their insights, however, please note
that they have not reviewed our specific rows, columns, rating system, and entries. The
matrix (including its entries) represents our effort to summarize information from a
variety of sources, and not from just them. We believe that the matrix entries require
further community review, vetting, and sustainment. Nevertheless, we believe they
provide a useful starting point.

A-5

We are grateful to all who provided us information, including interviewees, those
who provided information through conference presentations, and the authors of the
various documents we used, and thank them all.

B-1

Appendix B.

Key Topics Raised in Interviews

Interviewees provided a number of interesting and valuable insights that did not fit
anywhere else in this paper. This appendix is a summary of some of those insights, based
on our interpretation of their comments. This is only a subset due to length constraints,
and it is possible that some interviewee would disagree with a point brought up by others.
As agreed prior to the interviews, there is no attribution to any specific individual.

1. Key Issue: What Data are Available?

A key issue in tool selection is to determine what data are available for the target of
evaluation (TOE). Tools cannot be used if data they require are unavailable. Data
availability can be roughly grouped into these categories:

1. Service only (no executable),

2. Executable only (binary/byte code),

3. Source code without build source (“can’t build it”),

4. Source code, can rebuild from source (this category is required for many tools),

5. Source code, can rebuild and direct change.

Software in a given program can be divided into “custom” and “off-the-shelf”
(OTS) software, which is correlated to but not the same as these categories. Custom
software is often in category 5 (the source code is available, it can be rebuilt, and changes
can be directed)… but sometimes it is not. OTS software can often be further divided
into services (typically category 1), proprietary software (typically category 2), and open
source software (typically category 4)… but again, this is not always true.

A key point, however, is that many proprietary commercial OTS (COTS) suppliers
will not provide source code, or will do so only at a large extra cost. This lack of data
means many tools cannot be brought to bear, which could mask more serious problems.
It also complicates evaluating software alternatives; if serious problems are found in
software where more data are available, while fewer problems are found in software
where fewer data are available, this may mean that the latter has fewer problems, but it
may instead mean that there are the same or more problems that are masked by the lack
of data.

 B-2

2. Organizational Approaches

Different organizations take different approaches to evaluating software, in part
because of the impact of the data available, as well as other issues such as threat. For
example:

 The Air Force Application Software Assurance Center of Excellence (ASACoE)
goes out to developers and trains them, and helps to acquire and install tools in
their environment.

 The Software Engineering Institute (SEI) performs some third-party evaluations
for others after being given source code. However, it does not necessarily have
the build/execution environment (such software is in category 3), which in those
cases limits the kinds of analyses SEI can perform.

 One commercial third-party evaluator examines source code, and rebuilds the
executables from source to ensure that the same executable is produced. They
believe that the ability to rebuild identical executables from source code is
critical when looking for potentially malicious unknown attacks; “otherwise
[evaluators] can’t counter unknown malicious code.”

Additionally, it important to note that programs are usually not resourced to do
detailed evaluations of all OTS components. Typically, they must focus on only the most
critical OTS components.

3. Other Comments

There were a variety of other comments as well that are not trivial to organize, but
seemed worthwhile to record. These comments are listed below.

1. No silver bullet. There was general agreement that there is “no silver bullet” for
security issues. Analysis requires hard work, and it can never provide a “100%”
guarantee.” That said, there was general agreement that the technology exists to
improve current practices.

2. Training gaps continue. “Training gaps” were repeatedly mentioned. Training
is vital for developers, analysts, and tool users. Most software developers still
receive no education or training in how to develop secure software, leading to the
large number of easily exploited unintentional vulnerabilities in much of today’s
software. Although tools can help identify or remediate problems, automated
tools by themselves cannot catch all vulnerabilities, they typically require
significant training and ramp-up time for developers to gain the necessary
expertise to use the tools, and often users must understand how to develop secure
software in order to use the tools.

B-3

3. Evaluate throughout development. Early and repeated evaluation during
development is far better than evaluation after a system has been completely
developed. In particular, enabling rapid feedback is critical to minimizing cost
and schedule impact. One interviewee argued that, “if notification occurs within
a week of development, it typically takes less than 15 minutes to fix.” After 3
months or more the developer has forgotten many details; this means that fixing
any problem takes longer, and if the notification occurs late in the development,
schedule pressures can be an exacerbating problem. Also, without early
generation of vulnerability reports to help to train developers to avoid the
problem, the same problem may be repeated many more times. One organization
reported that it was often asked to review software late in the development
lifecycle, typically just before deployment as part of the certification and
accreditation (C&A) process. It is difficult to address problems at that point;
schedule pressures provide little time to look for problems, and it is difficult to
fix the problems that are found. Cost-effective analysis is facilitated by
integrating at least some tools into the development/sustainment environment,
e.g., in the software’s integrated development environment (IDE) or
configuration management (CM) system. It is best to incrementally increase tool
use and acceptance thresholds, using feedback to determine where to increase the
thresholds next.

4. Make SwA a requirement. Several interviewees reported that DoD programs
often don’t consider SwA a requirement. As a result, they do not prioritize the
funding of assurance efforts, including the purchase of analysis tools, use of
assurance tools and techniques, and making changes based on their results.
Program managers often presume assurance is the job of information assurance
(IA) specialists and fail to understand that assurance is a key part of system
readiness. Some program managers plan to “bolt on” assurance later, with
predictably poor results.

5. Contract for assurance. Instead, government programs need to contract for
assurance. One interviewee stated, “there’s nothing in the FAR that prevents us
from preferring suppliers who can demonstrate that they’ve done code scanning
or will provide source code so we can scan it” – yet this is not currently normal
practice. Some interviewees reported that the government often does not receive
the source code or unlimited rights to the software that it paid to develop. This
lack of data and data rights inhibits analysis of that software, as well as future
competition for that software’s maintenance.

6. Higher software quality may improve SwA tool effectiveness. There is a
widespread perception that first using “code quality” tools (which are often
simpler or cheaper) and fixing the issues they find makes other tools more

 B-4

effective. In particular, it is probably easier to analyze cleaner and less complex
code, making other analysis tools more effective. Several experienced people
have expressed this belief, and we think this is probably true. Unfortunately, we
have not been able obtain data to prove this claim. Chapter 9 notes that it would
useful to perform experiments to verify this.

7. Differentiate problem-finding from risk assessment. It is important to
distinguish between those finding problems so that they can be resolved versus
those trying to assess overall risk. Different tools focus on different aspects of
these goals, e.g., they may perform different trades between false positives and
false negatives. Also, different sets of information and expertise are typically
required. Software developers, with their detailed understanding of the software
they developed, are usually in a better position to fix vulnerabilities.
Auditors/selectors may understand the risk and context better for a given system
(since they may better understand the larger picture of the mission and what role
the software plays in it).

8. Triaging requires people. Triaging true positives from tool warnings must, in
the end, be done by people. A situation may or may not be a problem depending
on the operational environment and mission; for example, an input may appear to
be a problem but in fact be impossible to exploit due to larger processes.
However, it is important to consider that it is sometimes easier, faster, or less
expensive to fix a possible vulnerability than to do the in-depth analysis to
determine exploitability.

9. Summarize and identify what is important. It is critical to “boil up” complex,
lower-level results into simple results that can be communicated and acted upon.
One common mistake is to simply summarize the number of potential
vulnerabilities, independent of their relative importance. One interviewee
recommended that it was better to say “no vulnerabilities worse than X,” with
multiple levels, or be able to say, “Your security is at least up to some level.”
This is, of course, challenging to do in practice.

10. Automation is necessary. Automation is important for scale, affordability, and
reduction of human error. Experts are important, but “experts don’t scale.”
Where practicable, it is best to combine automation and human review.

11. False positives and false negatives affect tool utility. Tools are subject to false
positives, false negatives, and often both. Users of tools with false positives
must typically apply effort to determine whether some report is actually true, in
addition to the potential effort of fixing a problem if it is true and worth fixing.
In some cases it may be easier to fix a reported problem, even if the problem
does not exist, than to determine whether there actually is a problem. Users of

B-5

tools with false negatives should be aware that even after using them, residual
vulnerabilities probably remain. Tools with false negatives can still be very
useful, but it’s often important to compensate for their limitations (e.g., by using
additional tools or mitigations). Tools can be designed to have low false positive
rates or false negative rates, depending on their intended use. As one
interviewee put it, “developers hate false positives.” However, auditors worry
about false negatives. An interesting challenge is that false positives can
accumulate in real systems; as “real” defects are found by tools and then fixed,
false positives often remain. These accumulating residual false positives can
even discourage tool use over time, since they give the misleading perception
that tools do not find real vulnerabilities.

12. Need for static analysis ground truth. A number of comments were made
about static analysis tools in particular. NIST and NSA have both made progress
on establishing “ground truth” on the effectiveness of some types of static
analysis tools, but this task is hard and will require significant resources and
time. NSA CAS’s reports show that existing tools in their scope identify a
minority of vulnerabilities (at most 25% of the Juliet test suite), with relatively
little overlap between tools. This highlights the importance of using multiple
static analysis tools to get better coverage, but using multiple tools and
combining their results raises costs.

13. Dynamic analysis limited by execution environment availability. A number
of comments were also made about dynamic analysis tools. Many find them
useful, but using them requires an executable environment. This requirement
sometimes poses a challenge due to problems in acquiring the software, related
data and artifacts, or in assembling the relevant execution environment.

14. Combine approaches. Many believe it is best to combine various analysis
approaches. Combining static and dynamic approaches helps focus on areas that
need further examination (e.g., suspicious, unknown, and critical issues). Also,
combing dynamic test approaches with static analysis can allow better
identification of test coverage, making it easier to determine what is left untested.
Unfortunately, it is often difficult to correlate the results of static and dynamic
analyses. Combining automated tools with manual review techniques is another
remarked-upon approach. Manual review can be more comprehensive but is
typically much more costly. These costs have to be balanced against relying
solely on automated tools; one interviewee stated that “tools aren’t even getting
half of the vulnerabilities” (a view supported by NSA CAS research results).

15. Tools are only part of the process. There were some complaints that some tool
suppliers promise, or at least imply, more than they can deliver. This is not to
say that tools cannot help; tools can help. But users must understand that tools

 B-6

are limited and understanding their limitations is an important part of using tools.
In particular, tools should be part of a larger process for evaluating software, not
the only mechanisms in use.

16. Focus on program-specific issues as driven by context. There are various
“top” vulnerability lists, such as the CWE/SANS top 25 and the OWASP top 10.
While these can be helpful in understanding general trends, the most important
vulnerabilities for a given program are driven by context. Programs should not
naively apply top lists, but instead should use them as inputs and focus on what
is important for their context.

17. Integrate operations and development. There is often relatively little
integration between the operational and developmental environments. For
example, developers may receive bug reports, but they receive relatively little
information about the kinds of attacks that systems undergo. This lack of data
sharing makes it more difficult for developers to develop systems appropriate to
operational needs.

18. Ensure that executables correspond to source code. Before evaluating source
code, it is important to ensure that the executables correspond to the source code
so the effort is not wasted since what is examined might not represent what is
actually executed. This is especially important if there is a concern about
maliciously inserted functionality. The rebuild-and-compare process can
determine whether the source and executable correspond (presuming the
development tools are not malicious) by separately rebuilding the executable
from the source code to compare against the delivered executable. However, this
process requires very detailed build environment information and information
sharing between the builders of the original executable and the re-builders of the
checked executable.

19. Ensure that the test and operational environments match. The test
development environment must really match the production environment.
Vulnerability results often differ between the test environments (such as the
quality assurance mirrors) and the production environments. One reason is a
developer of off-the-shelf (OTS) software might test their software on “stock”
platforms, but not on hardened platforms. Another reason is that some patches
for a given platform cannot be operationally deployed – something that all
developers, including the patch creators and anyone depending upon the patched
system, should be aware of. If not, developers of software that depend on that
platform may incorrectly presume that the operational platform will be patched,
potentially leading to open vulnerabilities.

B-7

20. Functional testers and security evaluators must communicate. Those
responsible for functional system test and those responsible for software security
evaluation must communicate. System tests, for example, can clarify what is
exploitable in an environment, which is critical for those evaluating in software
security.

21. Share risk and compromise information. Where possible, improve the sharing
of operational attack and compromise information. Developers need certain
kinds of compromise information so they can better identify vulnerabilities, more
appropriately respond or mitigate vulnerabilities, and avoid creating similar
vulnerabilities in the future. This information is also needed by organizations
that identify and implement countermeasures (e.g., configure firewalls and web
application firewalls). In general, it was observed that attackers share
information, while defenders often don’t, because of defender concerns about
factors such as liability and intellectual property (IP) loss. One interviewee
commented that there is “honor among thieves, but not [among] competitors.”
DoD understandably classifies a significant amount of information about attacks
and compromises. However, many developers are not cleared to the same level
or have difficulty accessing this type of classified information. Thus, developers
for DoD systems are often unaware of the amount and nature of the attacks that
their systems must counter or of current vulnerabilities in the systems they
maintain, potentially leading to the development and sustainment of systems
unprepared for their operational environment.

22. Support damage reduction, damage detection, and recovery. No system can
be demonstrated to be invulnerable to all attacks. Modern systems must be
resilient, designed to reduce damage, detect problems, and recover from
exploitations. As one interviewee put it, “Everybody’s owned. Everyone has
viruses; not everyone gets sick.” Enabling damage reduction and recovery often
requires detecting that there is a problem, which suggests that software should be
designed with built-in real-time sensors that are always enabled so that problems
are monitored in real-time.

23. Consider earmarking funds for CPI protection. In some cases the
government funds research work where critical program information (CPI)
exists, will exist, or is likely to be created (CPI is defined in DoD Instruction
5200.39). Often these programs are funded as Small Business Innovation
Research (SBIR) programs. One interviewee proposed that the government
consider earmarking some of that research money specifically to prevent
unauthorized distribution of CPI.

24. Firmware analysis is difficult. Analysis of firmware is especially difficult.
Often no source code is available for firmware, and relatively few tools are

 B-8

designed for it. Additionally, firmware typically depends on low-level details
that are not widely available.

25. Quarantine software. Some interviewees suggested that software from
“outside” should be quarantined, enabling potential users to build up trust. One
analogy was that the software should “take a shower before swimming”; that is,
the organization should do simple checks of the software, put it into an artifact
repository where data from its use can accumulate, and then check it again before
using it in a final build.

26. Protect the development/sustainment environment. It is important to protect
the development/sustainment environment along with the operational
environment. This includes preventing attacks from getting in (e.g., for integrity
and availability) and preventing important information from getting out (e.g., for
confidentiality). This includes protecting against malicious developers,
malicious testers, and even malicious administrators of the development
environment.

27. Both centralization and decentralization have benefits. Arguments exist for
both decentralization and centralization of evaluation processes.
Decentralization benefits include the potential for broader system and
environment expertise. Centralization benefits include the potential for gaining
and using tool/ technique expertise and for sharing OTS evaluation resources. A
combination of decentralization and centralization may offer the most value, e.g.,
decentralized evaluation of custom software, backed by more centralized
tool/technique expertise when needed.

28. Identify common defects of similar systems. Defect types are often prevalent
in a given type of system. Thus, it is important to identify the various security-
related defects in a given system so that developers of similar systems will look
for them and know what not to repeat.

29. Use code signing. Code signing by the supplier, for testing by the recipient,
should be considered a minimum practice for critical software. It cannot counter
all problems, e.g., the software may have vulnerabilities as supplied or it may be
misconfigured. Still, code signing can counter a number of software supply
chain attacks.

30. Ensure customer is in control. Mechanisms in software that allow external
control (such as “call back to vendor,” automated patch updates, and
diagnostic/service interfaces) are of concern to many government organizations.
These are not considered backdoors by much of industry, but government
customers often want to control communications and changes of the software
that they depend on. Acquirers should require all external software interfaces to

B-9

be under their control and that the software enables easy, centralized
configuration of these controls. Similarly, suppliers should ensure that all
external interfaces of the software they supply are under customer control and
the software enables centralized configuration of these controls. These software
interfaces and configuration should be documented as necessary to ensure that
customers are ultimately in control of their systems.

31. SaaS-only analysis services are sometimes inappropriate to use and are

difficult to evaluate. Some tool suppliers provide vulnerability analysis as an
external service, that is, they provide analysis as Software-as-a-Service (SaaS).
In many such cases, the services are only available as a SaaS. Such services can
have advantages for customers, e.g., there is no software or hardware to install
(speeding initial use), and the tool supplier can filter and simplify results for
more efficient use. They also provide advantages to the tool supplier; the tool
can be more easily updated and trade secrets are easier to protect. However,
services may be inappropriate to use if the software to be evaluated or its data
must never be available to the public (e.g., because it is classified or proprietary).
There is also the concern that the service provider may gain insight into system
vulnerabilities that could be later exploited by adversaries through a variety of
means. For example, the service provider might not tell the customer about all
vulnerabilities found, or the list of vulnerabilities found might end up
(intentionally or not) in the hands of an adversary. An additional problem is that
it’s often difficult to determine or verify what a SaaS-only supplier actually does.
Many SaaS suppliers do not clearly describe in detail the types of analysis they
perform, the tools they use, the accuracy or completeness of the results, and so
on. It is often unclear if the SaaS supplier is just reusing existing public tools or
is providing valuable capabilities (e.g., their own custom tool/technique or strong
specialized expertise).

C-1

Appendix C.

Fact Sheets

These subsections describe each tool/technique type, providing:

 Overview. A brief description of the tool/technique type, including common
alternate names.

 Details. A more detailed description of what the tool/technique type is and how
it works, including general capabilities.

 Applicability. Information on when and where it applies (and when it doesn’t).
This includes the applicable parts of the lifecycle, types of software components
it does or doesn’t apply to (e.g., applications vs. kernel code, embedded vs. non-
embedded), and the data it requires (e.g., if it requires source code).

 Assessment. A description of what it is good for, in particular, its pros and cons.
In the pros and cons the word “it” refers to the tool/technology type unless
otherwise noted.

 Resource requirements. A qualitative description of what it costs including
licensing, training, and so on. Many factors affect cost, so we focus on
identifying the key types of costs likely to be relevant. It is especially important
to note that many tools/techniques have one-time costs as well as continuing
costs, and the distinction must be understood to properly scope any investment.
Nearly all tools and techniques require at least some training costs.

 Examples of suppliers/products. These examples are intended to help readers
further understand the tool/technology type. The lists of examples are

illustrative, and no endorsement is implied.

More detailed information about specific tools can, in some cases, be found in
[BAH 2009] and [CAS 2012]. Lists or evaluations of specific types of tools and
techniques are described in their corresponding fact sheet. NIST Software Assurance
Metrics and Tool Evaluation SAMATE2 and the OWASP Benchmark Project3 provide
some test suites/benchmarks for testing tools.

2 https://samate.nist.gov/Main_Page.html and https://samate.nist.gov/Other_Test_Collections.html
3 https://www.owasp.org/index.php/Benchmark

https://samate.nist.gov/Main_Page.html

 C-2

1. Attack Modeling

a. Overview

Attack modeling analyzes the system architecture from an attacker’s point of view
to find weaknesses or vulnerabilities that should be countered.

b. Details

Attack modeling is used to analyze the system architecture from an attacker’s point
of view; examples of attack modeling processes include “threat modeling” approaches
[Hernan 2006] [Meier 2003], using attack trees [Salter], developing abuse cases,
performing attack surface analysis, and examining attack patterns. Attack modeling may
be system-centric, asset-centric, and/or attacker-centric. System-centric approaches focus
on the components of a system, examining each component and their interconnections
(especially at trust boundaries). Asset-centric approaches focus on the key assets to be
protected. Attacker-centric analysis approaches focus on the attacker (e.g., the attacker’s
goals or methods).

Attack modeling may use the Common Attack Pattern Enumeration and
Classification (CAPEC) attack patterns as a list of typical attack patterns to see what the
system is vulnerable to. Modelers may choose, for example, to use the “mechanism of
attack” (CAPEC-1000) to ensure that they cover a large set of attack methods. See
http://capec.mitre.org for more information on CAPEC.

Unlike penetration testing, an analyst using attack modeling does not actually
perform the attack. Instead, the analyst analyzes system artifacts (such as designs) to
anticipate system vulnerabilities. Thus, attack modeling can be performed before the
system is implemented.

c. Applicability

This approach typically requires architectural information about the system and is
best applied before the system is implemented, e.g., as part of the design process. It can
be applied after the system is implemented, but at that point it is more difficult to apply
many countermeasures (such as changing the architecture), potentially reducing the
utility of attack modeling.

d. Assessment

Pros:

 Attack modeling can be applied before system implementation, allowing early
identification and cost-effective resolution of potentially critical vulnerabilities.

http://capec.mitre.org/

 C-3

 It can be relatively low-cost.

Cons:

 It has limited applicability to the internals of OTS components, since often their
implementation cannot be changed or change is more limited.

 It can be difficult to apply, because many developers are unaccustomed to
thinking like an attacker.

 Training is necessary.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Training, including costs for training, and the time of those receiving the
training.

− Development of initial analysis, and revising system architecture products to
counter identified vulnerabilities (if necessary).

− Tools, where used.

 Recurring resource requirements:

− Modifying analysis as architecture changes.

f. Examples of Suppliers/Products

Attack modeling can be done with simple tools (e.g., whiteboards and office
automation tools) depending on the specific approach chosen, especially if very abstract
models are used. A number of tools exist to track more detailed models.

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Microsoft SDL Threat

ModelingTool

http://www.microsoft.com/securit

y/sdl/adopt/threatmodeling.aspx

Led by

SINTEF

Seamonster http://sourceforge.net/projects/se

amonster/

http://sourceforge.net/projects/seamonster/
http://sourceforge.net/projects/seamonster/

 C-4

2. Warning Flags

a. Overview

Warning flags are mechanisms built into programming language implementations
and platforms that warn of dangerous circumstances. This technique maximally enables
relevant available warning flags; developers then resolve problems that the warning flags
identify before the system becomes operational.

b. Details

Many programming language implementations include mechanisms to warn or
prevent dangerous circumstances. Since the mechanisms are built into the language
implementations themselves, and are applied when they are processing source code, they
are immediately available for use. In some cases they are enabled by default (but can be
disabled); in many others they must be specifically enabled.

Warning flags are static mechanisms that are fundamentally similar to the source
code weakness analysis tools described elsewhere. However, although their analysis
tends to be less detailed than source code weakness analyzers, they have the advantages
of being built into the compiler or related tools. Since they are built into the compiler or
related tools, they have information about what the compiler will really do (a separate
tool must model this and its model may be incorrect). In addition, there is no financial
impediment of having to acquire something separate and integrate it into the development
process, and the tools’ analysis can be automatically repeated every time the software
changes (not just when some separate analysis tool is run). There is no conflict between
these two types of tools, and organizations may choose to both enable warning flags and
apply source code weakness analyzers.

c. Applicability

These tools require source code. Thus, the tool user must have access to the source
code. Note that the tool need not be a traditional compiler that generates machine code;
many scripting language implementations include a process that translates the source
code into some intermediate format, and this process can often implement warning flags.

It is far more practical to enable this tool/technique early in development, before
code writing begins, by enabling these warnings to the maximum practical degree and by
establishing rules to prevent disabling them without performing a broader risk analysis.
Once implementation begins, developers are likely to repeatedly use constructs that
would trigger warnings if they are not told of them immediately, making it potentially
more expensive to add warning flags later. A developer may disable warning flags
without understanding the long-term risks; while disabling flags is sometimes necessary,

 C-5

doing so should be considered carefully. The Software Assurance in Acquisition and

Contracting Language guide specifically points out this technique, saying, “Of the
software that are being delivered, were some compiler warning flags disabled? If so, who
made the risk decision for disabling it?” [DHS Acq 2012].

d. Assessment

Pros:

 It is often already available; in such cases, no costs are associated with acquiring
and integrating a new tool into the development environment.

 Plans to use warning flags encourage good coding practices from the start of
code development.

 It is easily enabled before code development begins.

Cons:

 Warning flags are limited in the problems they can find, in part because the
implementers of warning flags must avoid significantly slowing down the
compilation process and system operation.

 It can lead to false positives that result in extra work (e.g., to change the code to
stop the warning from triggering).

 It can be expensive to enable once the software has been developed. Often such
code is full of constructs that trigger warning flags, requiring time-consuming
analysis and code changes.

e. Resource Requirements

This tool/technique is relatively low cost when enabled early, because it is already
built into the selected development tools. Resource requirements include:

Resource requirements include:

 Initial resource requirements:

− Usage effort:

o To ensure appropriate warning flags are enabled.

o To modify code in response to raised flags, or documenting and tracking
cases where the code continues to trigger warnings.

− Training: Developer training may be needed, particularly to make it clear
that disabling warning flags should not be done lightly. Since warning flags
are built into the tools developers already use, the cost of the training tends
to be small.

 C-6

− Tools and associated computing resources: It may be necessary to move to
the latest version of the compiler being used; later versions typically include
more warning flags with more refined implementations.

 Recurring resource requirements:

− Usage effort:

o To determine whether a raised flag is inappropriate (e.g., its false
positive rate is too high) and the flag needs to be disabled.

o To modify code in response to raised flags, or documenting and tracking
cases where the code continues to trigger warnings. This can be a
significant effort. It is sometimes possible to slowly add flags and
modify code or only apply new flags to new code.

This tool/technique can be much more expensive to apply later in existing code,
depending on the code and warning flag involved. The list of resource requirements is
the same as above, but often “modifying code to respond to warning flags” can be a
significant effort. It is sometimes possible to slowly add flags and modify code or only
apply new flags to new code.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier

Product Name /

Flag name Languages Supported URL

GNU gcc options -Wall,

-Wextra, -ftrapv

C, C++, Objective-C,

Java, Ada

http://gcc.gnu.org/

Microsoft Visual C++ /W4 C (89 only), C++, and

C++/CLI

http://msdn.microsoft.com/en-

us/vstudio//default.aspx

Perl perl -w, use

warnings "all"

Perl http://www.perl.org

3. Source Code Quality Analyzer

a. Overview

Source code quality analyzers are tools that examine software source code and
search for the implementation of poor coding or certain poor architecture practices, using
pattern matches against good coding practices or mistakes that can lead to poor

 C-7

functionality, poor performance, costly maintenance, or security weaknesses depending
on context.

b. Details

Source code quality analyzers typically process the source code into some internal
intermediate representation, similar to how a compiler works. They then use rules
(patterns) of good coding practices to search this intermediate representation and report
matches. The intermediate representation and rule definition approach may use standards
or be specific to the tool. Some of these tools have expanded to provide some
architectural characteristics such as function point analysis and other mechanisms as a
means of identifying where there may be opportunities for improving the quality of
software construction as well as reducing the cost of maintenance. In some cases, users
can define their own rules.

Most tools use approximations of internal constructs so that they can scale up to
cover analysis of large software systems.

These tools can be used in different ways; we have grouped these uses into:

 Spot check – perform a quick quality check of “top” code quality issues,
primarily as an “audit” to get a sense of how much risk using the software
entails.

 Traditional use – search for code quality issues using the rule sets provided with
the tool to identify specific quality issues and guidance on how to fix them.
Typically this approach is used when the goal is to improve the quality of the
code.

 Context-configured – as with the traditional use, but rule sets are specially
created and tailored for evaluating that particular system in its intended
environment, and information is added about the system context (e.g., which
inputs are untrusted).

Note that the boundary between quality analysis and vulnerability-finding is not
sharp. The distinction is in the emphasis of the rule sets. Some tool vendors who started
out as code quality analyzer vendors are migrating to also provide source code weakness
analysis as well; those are grouped into the category of “Source Code Security
Analyzers” (for example, see SAMATE4) and “static application security testing”
(SAST) tools.

4 http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

 C-8

c. Applicability

These tools require source code; typically the source code must compile, and in
many cases, it must be possible to build executables. The tool must be able to process the
programming language(s) used, and the tool’s rule sets must be tailored for that language
and environment as well.

Theoretically these tools can apply to any kind of software. In practice, rule sets are
typically developed with specific kinds of software in mind (e.g., web server, embedded
software, or operating system kernel). Many applications build on frameworks; to be
effective, a tool needs to have rule sets designed to work with those frameworks.

d. Assessment

Pros:

 These tools can quickly find many code quality issues. Some can also provide a
discrete set of architectural patterns that can be used to better understand and
address code complexity and maintenance concerns.

 They scale better than manual evaluation, since they can be configured to
evaluate large code bases and delve into software in depth without getting tired
or bored.

Cons:

 Code quality issues that do not match rule set patterns are not detected.

 Most tools are subject to false negatives, that is, they can fail to find poor code
quality issues, even if the code quality pattern is in the rule set.

 Most tools are “unsound,” that is, they approximate some values during analysis
to enable scaling up to large software systems. These approximations can be
not-quite-correct, leading to a masking of quality issues in complex systems.

 Many tools produce many false positives. Also, different code quality
characteristics will have different levels of assurance impacts, and this
relationship cannot be fully determined by a tool. Thus, results require human
review that relies on knowledge of the application, language, operational
environment, mission, and types of good coding practices.

 Training is necessary. The tools typically report locations and what the potential
code quality type is, and perhaps some guidance on mitigation. Turning this
into actionable information requires human review to determine whether a
reported problem is a false positive, what it means, and what (if anything)
should be done.

 C-9

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary, some per node, some by lines of
code analyzed, and some are open source.

− Training, including costs for training and the time of those receiving the
training. Using these tools requires knowledge and understanding of the tool
results, including how to filter out false positives and configure the tool to
quickly produce expected results, both as an on-demand or inline operation
in the software development lifecycle.

 Recurring resource requirements:

− Annual maintenance fees.

− Lines of code fees (for tools that charge per line).

− Ongoing training of analysis for managing through new configurations, new
code quality concerns, identifying new types of false positives, learning new
language based code quality concerns.

− Usage effort. This includes setting up the configuration, running the tool,
and reviewing the results to determine what vulnerabilities are applicable
and their priority.

f. Examples of Suppliers/Products

Various documents discuss or review such tools, e.g., [Emanuelsson 2008] and
[Rebel].

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name Languages Supported URL

Synopsys

Coverity

Coverity Quality

Advisor

Coverity Save

C, C++, Java; C# in

progress for advisor

http://www.synopsys.com/softwa

re/coverity/Pages/default.aspx

Klocwork Truepath®

Refactoring®

Truepath: C/C++, Java

and C#

Refactoring: C/C++

http://www.klocwork.com/product

s/insight/index.php

 C-10

Supplier Product Name Languages Supported URL

Sonar SonarSource C, C++, Java, C#,

VB.net, PL/1, COBOL,

PHP, Python, VB6,

Natural, Javascript,

XML, etc; (caveat: when

leveraging their open

source orchestration

engine, only some

languages are open

source and licensed as

such) Commercial

license support includes

a broader set of

languages.

http://www.sonarsource.org/

CAST Application

Intelligence

Platform

Includes .NET, Java,

COBOL

http://www.castsoftware.com/pro

ducts/the-application-

intelligence-platform

4. Source Code Weakness Analyzer

a. Overview

Source code weakness analyzers are tools that examine software source code and
search for vulnerabilities, using pattern matches against well-known types of common
vulnerabilities (weaknesses). They are also called “Source Code Security Analyzers”
(per SAMATE5) and “static application security testing” (SAST) tools.

b. Details

Similar to source code quality analyzers, source code weakness analyzers typically
process the source code into some internal intermediate representation (note that this is
similar to how a compiler works). They then use rules (patterns) to search this
intermediate representation for vulnerabilities and report matches. The intermediate
representation and rule definition approach may use standards or be specific to the tool.
Examples are patterns of method/function use or “tainted” data from untrusted users that
can directly flow to sensitive operations. In some cases, users can define their own rules.

[Kupsch] reports that in their analysis these types of tools (Fortify and Coverity in
their case) found significantly fewer problems than manual review. On the other hand,
manual review is time-consuming and can be difficult to scale up cost-effectively. “The
tools are not perfect, but they do provide value over a human for certain implementation

5 http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

 C-11

bugs or defects such as resource leaks. They still require a skilled operator to determine
the correctness of the results, how to fix the problem and how to make the tool work
better.”

Note that the boundary between quality analysis and vulnerability-finding is not
sharp. The distinction is in the emphasis of the rule sets.

Most tools in practice use approximations of internal constructs so that they can
scale up to cover analysis of large software systems.

These tools can be used in different ways; we have grouped these uses into:

 Spot check – perform a quick quality check of “top” weaknesses, primarily as an
“audit” to get a sense of how much risk using the software entails.

 Traditional use – search for weaknesses using the rule sets provided with the
tool to identify specific vulnerabilities and guidance on how to fix them.
Typically this approach is used when the goal is to fix vulnerabilities in the
code.

 Context-configured – as with the traditional use, but rule sets are specially
created and tailored for evaluating that particular system in its intended
environment, and information is added about the system context (e.g., which
inputs are untrusted).

c. Applicability

These tools require source code; typically the source code must compile, and in
many cases, it must be possible to build executables. Thus, source code must exist and
the tool user must have access to it. The tool must be able to process the language used
in writing the software, and its rule sets must be tailored for that language and
environment as well.

Theoretically these tools can apply to any kind of software, but rule sets are
typically developed with applications in mind (e.g., these tools are less likely to be useful
in examining operating system kernels without many additional specialized rules). Many
applications build on frameworks; to be effective, a tool needs to have rule sets designed
to work with those frameworks.

d. Assessment

Pros:

 These tools are helpful in quickly finding some common types of vulnerabilities.

 They scale better than human evaluation, since they can manage to evaluate
large code bases and delve into software in depth without getting tired or bored.

 C-12

Cons:

 Some types of vulnerabilities are notoriously difficult to describe using rule sets
(e.g., logic bombs); only vulnerabilities that can be described as patterns can be
found.

 Vulnerabilities that do not match rule set patterns are not detected.

 Most tools can fail to find vulnerabilities, even if the vulnerability pattern is in
the rule set (a.k.a. “false negatives”). Most tools are “unsound,” that is, they
approximate some values during analysis (the “invariants”) to enable scaling up
to large software systems. These approximations can be not-quite-correct,
leading to a masking of vulnerabilities in complex systems.

 Any one tool tends to find a very small percentage of vulnerabilities in an
application, even for just the types of vulnerabilities the tool is designed to find.
[CAS 2011]

 Many tools produce significant false positives. Also, different vulnerabilities
will have different levels of importance that cannot be fully determined by a
tool. Thus, results require human review; this review requires knowledge of the
application, language, operational environment, mission, and common weakness
types.

 Training is necessary. The tools typically report locations and what the potential
vulnerability is, and perhaps some guidance on mitigation. Turning this into
actionable information requires human review to determine whether it’s a false
positive, what it means, and what (if anything) should be done.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

− Training, including costs for training, and the time of those receiving the
training. Using these tools requires knowledge and understanding the tool
results, including how to filter out false positives and configure the tool to
quickly produce expected results.

 Recurring resource requirements:

− Annual maintenance fees.

− Lines of code fees (for tools that charge per line).

 C-13

− Usage effort. This includes setting up the configuration, running the tool,
and reviewing the results to determine what vulnerabilities are applicable
and their priority.

f. Examples of Suppliers/Products

Longer lists of suppliers/products are available at:

 NIST SAMATE “source code Security analyzers” page6,

 NSA Center for Assured Software (CAS) evaluations [CAS 2011].

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name Languages Supported URL

Brakeman

project

Brakeman Ruby on Rails http://brakemanscanner.org/

FindBugs

project

FindBugs Java http://findbugs.sourceforge.net/

Parasoft Jtest

C++test

dotTEST

Java

C, C++

.NET

https://www.parasoft.com/produc

t/jtest/

https://www.parasoft.com/produc

t/cpptest/

https://www.parasoft.com/produc

t/dottest/

LLVM Project Clang Static

Analyzer

C, C++, and Objective-C http://clang-analyzer.llvm.org/

PMD project PMD Java, JavaScript, PLSQL,

Apache Velocity, XML,

XSL

https://pmd.github.io/

Synopsys

Coverity

Coverity Static

Code Analysis

C, C++, C#, Java, JSP,

JavaScript, PHP, Python,

ASP .NET, Objective-C

http://www.synopsys.com/softwa

re/coverity/Pages/default.aspx

Grammatech CodeSonar C, C++ http://www.grammatech.com/pro

ducts/codesonar/overview.html

HP Fortify Static Code

Analyzer (SCA)

C, C++, C# and other

.NET languages,

COBOL, Java,

JavaScript/ AJAX, PHP,

PL/SQL, Python, T-SQL

http://www8.hp.com/us/en/softwa

re-

solutions/software.html?compUR

I=1338812#.UXBF-MrX-NM

6 http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

https://www.parasoft.com/product/jtest/
https://www.parasoft.com/product/jtest/
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

 C-14

Supplier Product Name Languages Supported URL

Checkmarx Checkmarx Java, C#/.NET, PHP, C,

C++, Visual Basic 6.0,

VB.NET, Flash, APEX,

Ruby, JavaScript, ASP,

Android, Objective C,

Perl

http://www.checkmarx.com/

IBM (formerly

Ounce Labs)

AppScan

Source

C, C++, Java, VB.NET,

C#

http://www-

01.ibm.com/software/awdtools/a

ppscan/

5. Source Code Knowledge Extractor

a. Overview

Source code knowledge extractors extract information such as the architecture and
design from the source code to aid analysis.

b. Details

Knowledge extractors extract key information from source code, e.g., to display
summary information about the software, enable searches for key information, or to
enable access to data managed by the source code.

Knowledge extractors can be used in many other ways; in particular, a knowledge
extractor can be used as the technical baseline for implementing a source code quality
analyzer or a source code weakness analyzer. This category focuses on using extractors
to obtain architectural, design, and mission layer information. If a knowledge extractor is
used to implement a different tool/technology type, consult that other category instead. .

These tools can be used in different ways; we have grouped these uses into:

 Traditional use – examine software, e.g., to see its design,

 Context-configured – as with the traditional use, but rule sets are specially
created and tailored for evaluating that particular system in its intended
environment, and information is added about the system context.

c. Applicability

These tools require source code; typically the source code must compile, and in
many cases, it must be possible to build executables. Thus, source code must exist and
the tool user must have access to it. The tool must be able to process the language used
in writing the software, and its rule sets must be tailored for that language and
environment.

 C-15

d. Assessment

Pros:

 These tools are helpful in dealing with larger codebases (e.g., more than 1
million lines of code). They can be especially helpful when examining
codebases new to the analyst.

Cons:

 They do not directly find vulnerabilities, but instead, extract and present
information to aid analysts’ understanding. Of course, once a design is better
understood (e.g., where inputs and outputs occur), it is easier to search for
certain kinds of vulnerabilities.

 Training is necessary. Turning this into actionable information requires human
review.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

− Training, including costs for training and the time of those receiving the
training. Using these tools requires some knowledge and understanding of
the tool results, including how to filter out false positives and configure the
tool to quickly produce expected results.

 Recurring resource requirements:

− Annual maintenance fees,

− Lines of code fees (for tools that charge per line),

− Usage effort. This includes setting up the configuration, running the tool,
and reviewing the results to determine what vulnerabilities are applicable
and their priority.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

 C-16

Supplier Product Name URL

IBM Rational Asset

Analyst

http://www-

03.ibm.com/software/products/

us/en/raa/

Micro Focus Enterprise

Analyzer

http://www.microfocus.com/pro

ducts/enterprise-

analyzer/enterprise-

analyzer/index.aspx

6. Traditional Virus/Spyware Scanner

a. Overview

Traditional virus/spyware scanners are tools that search for known malicious
patterns in the binary or bytecode.

Note that modern “anti-virus” programs also perform behavioral analysis; this
capability is (for our purposes) rolled into intrusion detection systems (IDSs)/intrusion
prevention systems (IPSs), discussed in a separate category.

b. Details

Traditional virus and spyware scanners are host-based tools that detect, prevent, and
remove malware (of various types), including computer viruses, worms, Trojan horses,
backdoors, key loggers, rootkits, adware, and spyware. They are also called “anti-virus”
and/or “anti-spyware” tools. Traditional anti-virus detection methods include signature-
based detection as well as heuristics-based detection:

 Signature based detection is a method of detecting and locating known viruses
and malware. In this case, the antivirus software does a comprehensive
comparison of the contents of files to a dictionary of virus signatures to identify
whether each file is clear of known viruses.

 Heuristic-based detection is a method of detecting and locating unknown threat,
e.g., for variants of known malware or for typical damage done. This sort of
analysis takes computing resources and time, which slows down system
performance. Heuristic detection also increases the number false positives,
creating operational or system inefficiencies.

Most traditional virus and spyware scanners in practice are standard solutions used
on hosts (desktop, workstation, server, etc.).

c. Applicability

These tools reside on hosts, including desktops, workstations, and servers.

 C-17

d. Assessment

Pros:

 These tools are helpful in quickly finding whether a file is corrupt or infected
with known malware, viruses, worms, etc.

 These tools are commoditized and thus on a per node licensing model are
relatively inexpensive.

 There are multiple vendors with extensive research capabilities, providing
constant updates to newly identified signatures and/or developed heuristics for
continuous improvement in the quality of analysis.

 There is extensive community participation and communication for alerts on
new viruses, techniques, and heuristics.

Cons:

 Constant updates to signatures and heuristics are necessary. Managing the scale
of these updates across an enterprise is a challenge and creates a significant
expenditure.

 False positives can occur, especially when applying heuristics.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− License for software to run and managing default configurations to ensure
consistency across the enterprise.

− Minimal training requirement for implementing traditional anti-virus or anti-
spyware tools.

 Recurring resource requirements:

− Annual licensing model,

− Ensuring the most current updates are tested and deployed across the
enterprise to deliver maximum protection. This may include balancing this
with the DoD Information Assurance Vulnerability Alert (IAVA) process.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

 C-18

Supplier Product Name Description URL

McAfee McAfee

AntiVirus Plus

Anti-virus http://www.mcafee.com/us/

Symantec Norton Anti-

virus

Anti-virus http://www.symantec.com/index.j

sp

Trend Micro Titanium

Antivirus Plus

Anti-virus http://www.trendmicro.com/us/in

dexnight.html

7. Bytecode Weakness Analyzer

a. Overview

Bytecode weakness analyzers are tools that examine bytecode and search for
vulnerabilities, using pattern matches against well-known common types of
vulnerabilities (weaknesses). These types of tools are also called bytecode scanners
(http://samate.nist.gov/index.php/Byte_Code_Scanners.html). These are in concept
similar to source code weakness analyzers and binary weakness analyzers, but for
bytecode instead of source code or binary (executables) respectively.

b. Details

Many implementations, such as common Java implementations, generate an
intermediate “bytecode” as an executable. Bytecode weakness analyzers typically
process the bytecode into some internal intermediate representation. They then use rules
(patterns) of common weaknesses to search this intermediate representation, and report
matches. The intermediate representation and rule definition approach may use standards
or be specific to the tool. In some cases, users can define their own rules.

Most tools in practice use approximations of internal constructs so that they can
scale up to cover analysis of large software systems.

Bytecodes tend to be at a higher level of abstraction than traditional binary
executables, and they often include useful information such as symbol tables (that list
names assigned to various constructs). Thus, it tends to be easier to develop bytecode
analyzers than traditional binary tools, and this ease can translate into stronger analysis
by tools. However, some information available to source code analyzers is not available
to bytecode analyzers.

c. Applicability

These tools require bytecode, thus, they only apply to language environments that
generate bytecode (e.g., many Java implementations).

http://en.wikipedia.org/wiki/McAfee
http://en.wikipedia.org/wiki/McAfee
http://archive.msdn.microsoft.com/codeanalysis/Release/ProjectReleases.aspx?ReleaseId=553
http://archive.msdn.microsoft.com/codeanalysis/Release/ProjectReleases.aspx?ReleaseId=553
http://en.wikipedia.org/wiki/Trend_Micro_Internet_Security
http://en.wikipedia.org/wiki/Trend_Micro_Internet_Security
http://samate.nist.gov/index.php/Byte_Code_Scanners.html

 C-19

If bytecode is generated, it is more readily available than source code from
proprietary third-party suppliers.

As with source code and binary analyzers, many applications build on frameworks;
to be effective, the tool needs to have rule sets designed to work with those frameworks.

d. Assessment

The pros and cons are similar to those of source code weakness analyzers.

Pros:

 These tools are helpful in quickly finding some common types of vulnerabilities.

 They scale better than human evaluation, since they can manage to evaluate
large code bases and delve into software in depth without getting tired or bored.

 Bytecode is more readily available from proprietary COTS suppliers, if there is
bytecode at all.

Cons:
 Some types of vulnerabilities are notoriously difficult to describe using rule sets

(e.g., logic bombs); only vulnerabilities that can be described as patterns can be
found.

 Vulnerabilities that do not match rule set patterns are not detected.

 Most tools can fail to find vulnerabilities, even if the vulnerability pattern is in
the rule set (a.k.a. “false negatives”). Most tools are “unsound,” that is, they
approximate some values during analysis (the “invariants”) to enable scaling up
to large software systems. These approximations can be not-quite-correct,
leading to a masking of vulnerabilities in complex systems.

 Any one tool tends to find a very small percentage of vulnerabilities in an
application, even for just the types of vulnerabilities the tool is designed to find.
[CAS 2012]

 Many tools produce a significant number of false positives. Also, different
vulnerabilities will have different levels of importance that cannot be fully
determined by a tool. Thus, results require human review; this review requires
knowledge of the application, language, operational environment, mission, and
common weakness types.

 Due to the lower-level nature of the tools, it can be very difficult for external
parties to determine whether a report is a false positive or not.

 C-20

 Even if a report is confirmed to be a problem, an external party would typically
have difficulty fixing the problem, and any such attempt would void any support
or warranty.

 Training is necessary. The tools typically report locations and what the potential
vulnerability is, and perhaps issue some guidance on mitigation. Turning this
into actionable information requires human review to determine whether it’s a
false positive, what it means, and what (if anything) should be done.

For detailed evaluations of tools, refer to [CAS 2012].

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary, some per node, others by lines of
code analyzed.

− Training, including costs for training, and the time of those receiving the
training. Practically using these tools requires knowledge and understanding
of the tool results, including how to filter out false positives and configure
the tool to quickly produce expected results.

 Recurring resource requirements:

− Annual maintenance fees,

− Lines of code fees (for tools that charge per line),

− Usage effort. This includes setting up the configuration, running the tool,
and reviewing the results to determine what vulnerabilities are applicable
and their priority. For bytecode analyzers, this can be significant, due to the
lower-level nature of the data they analyze.

f. Examples of Suppliers/Products

Longer lists of suppliers/products are available at the NIST SAMATE “source code
Security analyzers” page, http://samate.nist.gov/index.php/Byte_Code_Scanners.html.

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

http://samate.nist.gov/index.php/Byte_Code_Scanners.html

 C-21

Supplier Product Name Bytecode Supported URL

FindBugs

project

FindBugs Java http://findbugs.sourceforge.net/

FindSecurityB

ugs project

FindSecurityBu

gs (plug-in to

FindBugs)

Java http://h3xstream.github.io/find-

sec-bugs/

Mono Project Gendarme .NET http://www.mono-

project.com/Gendarme

VeraCode VeraCode

Static Analysis

Java, .NET http://www.veracode.com/

8. Binary Weakness Analyzer

a. Overview

Binary weakness analyzers are tools that examine binaries (executables) and search
for vulnerabilities, using pattern matches against well-known common types of
vulnerabilities (weaknesses). They are also called binary code scanners
(http://samate.nist.gov/index.php/Binary_Code_Scanners.html). They are in concept
similar to source code weakness analyzers and bytecode weakness analyzers, but for
binary executables bytecode instead of source code or bytecode respectively.

b. Details

Binary code weakness analyzers typically process the binary code into some internal
intermediate representation. They then use rules (patterns) of common weaknesses to
search this intermediate representation, and report matches. The intermediate
representation and rule definition approach may use standards or be specific to the tool.
In some cases, users can define their own rules.

Most tools in practice use approximations of internal constructs so that they can
scale up to cover analysis of large software systems.

Binary executables are at a lower level of abstraction than typical bytecodes, and are
at a far lower level of abstraction than source code. Thus, it tends to be more difficult to
develop binary analyzers compared to bytecode or source analyzers. This difficulty can
translate into difficulties for analyzer developers; significant algorithms and computation
may be required to determine what is obvious from the source code or, if available, a
bytecode. This difficulty can translate into greater difficulty in finding weakness
patterns.

Some tools need some help from the developers of the executable; e.g., they may
require the development organization to provide a “symbol table.” In such cases, some

http://samate.nist.gov/index.php/Binary_Code_Scanners.html

 C-22

cooperation from the developer is required. On the other hand, symbol tables may be
significantly easier to get from a developer than the source code. This need for additional
information affects when the tool can be used for the assessment of proprietary COTS
software.

c. Applicability

These tools require binaries, thus, they only apply when binaries are available.
Many language implementations typically generate binaries (including C, C++, and
Objective-C). Many providers of proprietary COTS software will provide binaries even
if they do not provide source code.

Many applications build on frameworks; to be effective, a tool needs to have rule
sets designed to work with those frameworks.

d. Assessment

The pros and cons are similar to source code and bytecode weakness analyzers.

Pros:

 These tools are helpful in quickly finding some common types of vulnerabilities.

 They scale better than human evaluation, since they can manage to evaluate
large code bases and delve into software in depth without getting tired or bored.

 Binaries are more readily available from proprietary COTS suppliers, if there is
a binary at all.

Cons:

 Some types of vulnerabilities are notoriously difficult to describe using rule sets
(e.g., logic bombs); only vulnerabilities that can be described as patterns can be
found.

 Vulnerabilities that do not match rule set patterns are not detected.

 Most tools can fail to find vulnerabilities, even if the vulnerability pattern is in
the rule set (a.k.a. “false negatives”). Most tools are “unsound,” that is, they
approximate some values during analysis (the “invariants”) to enable scaling up
to large software systems. These approximations can be not-quite-correct,
leading to a masking of vulnerabilities in complex systems.

 Any one tool tends to find a very small percentage of vulnerabilities in an
application, even for the types of vulnerabilities the tool is designed to find
[CAS 2012].

 C-23

 Many tools produce a significant number of false positives. Also, different
vulnerabilities will have different levels of importance that cannot be fully
determined by a tool. Thus, results require human review; this review requires
knowledge of the application, language, operational environment, mission, and
common weakness types.

 Due to the low-level nature of the tools, it can be very difficult for external
parties to determine whether a report is a false positive or not.

 Even if a report is confirmed to be a problem, an external party would typically
have difficulty fixing the problem, and any such attempt would void any support
or warranty.

 Training is necessary. The tools typically report locations and what the potential
vulnerability is, and perhaps some guidance on mitigation. Turning this into
actionable information requires human review to determine whether it’s a false
positive, what it means, and what (if anything) should be done.

For detailed evaluations of tools, refer to [CAS 2012].

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

− Training, including costs for training, and the time of those receiving the
training. Practically using these tools requires knowledge and understanding
of the tool results, including how to filter out false positives and configure
the tool to quickly produce expected results.

 Recurring resource requirements:

− Annual maintenance fees,

− Lines of code fees (for tools that charge per line),

− Usage effort. This includes setting up the configuration, running the tool,
and reviewing the results to determine what vulnerabilities are applicable
and their priority. For binary tools these are quite substantial, due to the
low-level nature of the data they analyze.

 C-24

f. Examples of Suppliers/Products

Longer lists of suppliers/products are available at the NIST SAMATE “binary code
scanners” page.7

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

VeraCode VeraCode Static Analysis http://www.veracode.com

GrammaTech CodeSonar for Binaries

(builds on CodeSurfer/x86)

http://www.grammatech.com/codes

onar

9. Inter-application Flow Analyzer

a. Overview

Inter-application flow analyzers are tools that examine the control and/or data flows
of a set of applications, identifying their communication interfaces (such as Android
intents) and permissions, and then identify flows that violate the security policy.

b. Details

Although inter-software program or application flow analyzers have existed in
enterprise systems analysis for many years, the use of such an analysis in the mobile
environment is new. Mobile application inter-application flow analysis can be done by
extracting information from application source, bytecode, or binary. Mobile applications
are built on top of a large pre-existing framework, making it somewhat more manageable
to develop tools to analyze inter-software application flows. Mobile environments
typically do isolate individual applications. However, by default they do not counter
collusion or the unexpected exploitation of one application’s services by another.

In the case of an enterprise mobile environment, this type of tool enables
verification that the applications accepted into the application store comply with security
policy for inter-application communication. Static analysis may identify all possible
pathways of communications among the mobile applications (in practice, it can
sometimes be difficult to truly identify all possible pathways, but dynamic approaches
certainly cannot be certain to identify all possible pathways). These types of tools extract
information from the application package manifest (where available), use automated

7 http://samate.nist.gov/index.php/Binary_Code_Scanners.html

http://www.grammatech.com/codesonar
http://www.grammatech.com/codesonar
http://samate.nist.gov/index.php/Binary_Code_Scanners.html

 C-25

static analysis techniques to extract up the interdependencies on the application code,
derive possible information flows from application sources and sinks leveraging control
flows from application entry points to show all possible outcomes.

For example, app components are the fundamental building blocks of Android
applications. Application components can be activities (which provide a user interface to
an application), services (which perform an action in the background, broadcast receivers
(which listen for messages from other applications), or content providers (which store
potentially shareable data, and component communications using intents). “Because the
system runs each app in a separate process with file permissions that restrict access to
other apps, [an] app cannot directly activate a component from another app. The Android
system, however, can. So, to activate a component in another app, you must deliver a
message to the system that specifies your intent to start a particular component. The
system then activates the component [if authorized].” [Android Fundamentals 2013]

c. Applicability

This type of analysis applies any time there are multiple interacting applications that
may together collude or cause vulnerabilities. This seems especially appropriate in the
mobile environment, where enterprise data and applications that should not have access
to enterprise data might be on the same device. This type of tool can be used to analyze
sets of applications in an application store, which could lead to results that allow some
sets of applications to be acceptable as long as certain other applications are not also
installed on the same device. In particular, the role individuals or groups of individuals
play in an environment can define the baseline set of applications necessary for
operations. A baseline set can be examined to determine risk, and additional applications
can also be examined to determine changes to the risk profile if they are added to a
baseline.

d. Assessment

Pros:

 Targeted approach to quickly ensure application collusion risks are
understood.

 Can use for assessing third-party applications without requesting sources.

Cons:

 Current implementations support only Android mobile applications.

 In some cases it can be difficult to determine this information using solely
static analysis.

 C-26

e. Resource Requirements

Resource requirements include initial licenses and annual maintenance fees.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name

Language or

Application Type URL

Galois FUSE8 Android http://corp.galois.com

- Lintent Android http://www.dais.unive.it/~calzava

ra/papers/forte13.pdf

10. Binary/Bytecode Simple Extractor

a. Overview

Binary/bytecode simple extractors are simple tools that report simple facts about
binary executables or bytecode, or perform trivial analysis of them.

b. Details

Binary and bytecode file formats9 are not easy to read directly. There are various
simple tools that can report simple facts, or perform trivial analysis, of binary executables
or bytecode. Since binaries and bytecode by their nature are opaque, these tools can
provide some quick – but extremely limited – insight.

A useful example is the Portable Operating System Interface (POSIX) “strings”
command, which writes out any sequence of four or more printable characters terminated
by the newline or NUL10 character [POSIX.1-2008]. Other examples include GNU
readelf, which reports low-level details about executable files if they are in Executable
and Linkable Format (ELF) format. Other tools exist for a variety of formats.

8 DARPA funded initial development of FUSE for Android; it is currently available for use.
9 Binary formats include the ELF format used by most Unix and Linux systems, as well as the Microsoft

Portable Executable (PE) and Common Object File Format (COFF) files used for executables on the
Microsoft Windows operating systems. One bytecode format is the JAR (Java ARchive) format, which
in turn can include class files for the Java Virtual Machine (JVM). Bytecode for the Microsoft .NET
environment can be in PE format, which contains Common Language Infrastructure (CLI) assemblies
that house Common Intermediate Language (CIL) code.

10 NUL is the conventional name of the null character; in ASCII this is encoded as the number 0.

http://www.dais.unive.it/~calzavara/papers/forte13.pdf
http://www.dais.unive.it/~calzavara/papers/forte13.pdf

 C-27

c. Applicability

These tools only apply when a bytecode or binary is available. They could be used
even when source code is available, but since they only provide very limited insight, they
have even less value when source code is available.

By themselves, these tools are extremely limited in the information they can
provide. In general they can only provide superficial, basic information about a bytecode
or binary. In rare cases, such as an incompetent malicious developer who inserts
malicious code into a bytecode or binary, these tools can reveal problems such as
trapdoors (by revealing an unexpected string in an executable that turns out to be a
trapdoor initiator). They can also reveal unintentional trapdoors left by developers who
inserted them for debugging or testing. By themselves, these tools are used primarily
because they have typically no or little cost and many developers already know how to
use them.

As a first step towards a deeper analysis, these tools have more merit, because they
can quickly provide some basic information about the TOE before bringing more
powerful tools to bear.

d. Assessment

Pros:

 These tools are helpful in quickly reporting basic information about binaries or
bytecodes.

 They are cheap/free and often already available to developers.

 They can be helpful before bringing more powerful tools to bear.

Cons:

 By themselves they usually find nothing actionable.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Training, including costs for training, and the time of those receiving the
training. Typically little for developers.

 Recurring resource requirements:

− Usage effort. This is primarily for reviewing results, e.g., to determine
whether any “strings” or binary segments are unexpected. Often this is
small, but often the results are not conclusive.

 C-28

f. Examples of Suppliers/Products

These tools are typically included as part of an operating system or development
environment.

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name

GNU strings

GNU readelf

11. Compare Binary/Bytecode to Application Permission Manifest

a. Overview

Tools that compare binary/bytecode to the application permission manifest examine
the binary/bytecode to determine what permissions the application attempts to use and
compare that to the permissions actually requested in the application permission manifest.
Note that “permissions” in this context are the privileges granted to an application, not
the permissions set on objects such as files or memory.

b. Details

Such tools must estimate the expected permission requests by analyzing the
binary/bytecode. Some technical constructs (such as reflection) can make it difficult to
determine exactly what permissions are required.

c. Applicability

These tools can potentially identify under-granting or over-granting of privileges to
a given application.

d. Assessment

Pros:

 Simple and easy to apply.

Cons:

 They do not directly find vulnerabilities, but instead warn of potential
inconsistencies between claimed privilege requirements and actual requirements.

 C-29

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Training, including costs for training, and the time of those receiving the
training. Typically little for developers.

 Recurring resource requirements:

− Usage effort. This is primarily for reviewing results.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Stowaway Stowaway http://www.cs.berkeley.edu/~af

elt/Android_permissions.pdf

ViaForensics ViaLab (portion) https://viaforensics.com/produc

ts/vialab/

Note that current evidence suggests that Stowaway is no longer maintained.

12. Obfuscated Code Detection

a. Overview

Obfuscated code detectors detect when code is rendered obscure. They may be
applied to source code (e.g., JavaScript), bytecode, or executables. Obfuscation is a
commonly used technique for protecting critical or proprietary technology, so that others
cannot easily determine what the software does. However, obfuscation can make it more
difficult to identify unintentional and intentional vulnerabilities. In particular,
obfuscation can be used to obscure malware. Obfuscated code detectors are a way to
counter the risk of obscured vulnerabilities.

b. Details

Obfuscation is used to protect critical or proprietary technology. Obfuscation
approaches can limit or counter reverse-engineering methods used to better understand
software. Note that some DoD projects may be required to release obfuscated code, and
many proprietary software application developers use obfuscation to protect their
intellectual rights. However, obfuscation is also a commonly used practice for disguising

 C-30

malicious code. Since attackers also leverage obfuscation, the challenge is that
obfuscation can limit the ability of other analyzers to identify indicators of risk.

In order to reduce the risk of obfuscated code that may or may not have both
unintentional vulnerabilities and intentional (malware), tools have been developed to
detect when code is rendered obscure. These tools can detect whether code is obfuscated,
providing relevant information for risk decisions.

Code can be obfuscated in a variety of ways. Some practices can obfuscate code in
a limited manner, even if that is not their primarily purpose. Such practices include
generating executables (instead of distributing source code) and using mechanisms that
cause are more difficult to statically analyze (e.g., reflection). However, these general
practices can often be addressed by designing tools to deal with them. In this type of
tool/technique we focus on mechanisms that have, as a primary purpose, the goal of
limiting or countering reverse-engineering. For our purposes this can include source
code minification.

c. Applicability

Obfuscated code detection is a fairly simple activity when using tools that detect
whether code is obfuscated or not. This can help provide a quick indicator in how
effective many other analyzers are likely to be. If a program is obfuscated, then other
tools (especially static analysis tools) may be ineffective, suggesting that the obfuscated
program has a higher risk unless other steps can be taken.

d. Assessment

Pros:

 Fast ramp-up for use,

 Fast method of identifying obfuscation,

 Cost effective approach.

Cons:

 Limited knowledge for assessment.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Small investment for licensing

 C-31

 Recurring resource requirements:

− Annual maintenance fees are often minimal to none.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name

Language or

Application Type URL

ViaForensics Vialab (portion) Various https://viaforensics.com/products

/vialab/

13. Binary/Bytecode Disassembler

a. Overview

Binary/bytecode disassemblers recover higher-level constructs from lower-level
binaries and bytecode, which can then be analyzed by people.

b. Details

Since binary and bytecode files are difficult for humans to review directly, and for
many tools to analyze, one approach is to use automated tools to reconstruct a
representation of the executable that is easier to review and analyze. These tools are
often called “disassemblers” if they produce more-or-less direct representations of the
underlying binary or bytecode, and “decompilers” if they produce higher-level source
code representations for a higher-level language, though this distinction is not always
made consistently.

In theory, this approach could find all vulnerabilities, unintentional or intentional,
since what is being reviewed is what is executed. However, the large effort and strong
expertise required to do this limits in practice what this approach can and cannot do with
large, modern software.

c. Applicability

These tools require binary or bytecode. They often are not be used if source code is
available, although they could be if there was doubt that the binary or bytecode faithfully
represented the source code.

 C-32

d. Assessment

Pros:

 They can apply in cases where only the binary or bytecode is available.

Cons:

 Human analysis of disassembled/decompiled results tends to be very costly and
difficult to scale.

 Supporting automated toolsets may have trouble processing
disassembled/decompiled results for weaknesses.

 Training is necessary. Typically users must understand the lower-level
constructs that are being analyzed.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

− Training, including costs for training, and the time of those receiving the
training. This includes in-depth knowledge of the underlying binary or
bytecode format.

 Recurring resource requirements:

− Annual maintenance fees.

− Usage effort. This can be substantial, especially for human (manual) review
of results.

f. Examples of Suppliers/Products

The NIST SAMATE “binary code scanners” page has more information:
http://samate.nist.gov/index.php/Binary_Code_Scanners.html. Note that IDA Pro is a
commercial product name and is not related to the Institute for Defense Analyses (IDA)
and derives its identify from “IDA is the Interactive DisAssembler.” Also, IDA Pro is
both a disassembler (static) and a debugger (dynamic).

The following is an example of a supplier and product. This example is provided to
help readers understand this tool/technology type. This list is illustrative, and no
endorsement is implied.

http://samate.nist.gov/index.php/Binary_Code_Scanners.html

 C-33

Supplier Product Name Languages Supported URL

Hex-Rays IDA Pro https://www.hex-

rays.com/index.shtml

14. Focused Manual Spot Check

a. Overview

A focused manual spot check is a technique that focuses manual analysis of code
(typically less than 100 lines of code) to answer specific questions. For example, does
the software require authorization when it should? Do the software interfaces contain
input checking and validation?

b. Details

Manual spot-checking of code can be performed as source, byte or binary static
analysis. Analyzing bytecode or binary code may require sophisticated manual
reviewers.

Spot-checking of source code can be an efficient approach to enforcing good coding
standards, compliance with specific architecture and interface requirements, or checking
for typical weaknesses (such as the OWASP top 10 or top 25 CWE/SANS list) that will
require correction by developers prior to release of code.

Random spot-checking style of code can provide insight into the software. It can
also help measure the level of developer skill/knowledge, as well as potential gaps in
education and training of the development team.

c. Applicability

It can apply to all software, but the costs of manual spot-checking typically limit it
to small portions of the software.

It typically used to focus on very specific areas. Examples include authorization
functionality and input checking/validation of untrusted input.

d. Assessment

Pros:

 Depending on the focus of the spot-checking, it can be quite effective to remove
some types of weaknesses (e.g., those related to authentication and input
validation).

 C-34

 It can reduce false positives, since humans can use their knowledge of system
context.

Cons:

 As the sample size and the system complexity increase, it can become costly,
time-consuming, and constrained by the lack of adequately trained people.

 Personnel training and the knowledgebase must be continuously improved to
keep pace with context and updates to software.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Changes to the software may require a continuous monitoring of the code
thus making it a recurring activity.

− Continuous training of developers/analysts to expand knowledge base on
new weakness or non-compliance issues.

− Outsourcing (if applicable of the spot check) to third-party assessor.

f. Examples of Suppliers/Products

Not applicable.

15. Manual Code Review

a. Overview

Manual code review (other than inspections) is a specialized technique that is the
manual examination of code, e.g., to look for malicious code. The manual process can be
incorporated into the software development lifecycle either to provide analysis to all code
in the software development lifecycle (SDLC).

b. Details

Manual code review can be used to find coding errors in software. It can be
implemented as one of the SDLC process steps with a second person check within the
developer organization, or with a third-party evaluator. Depending on the need and focus

 C-35

of the organization for using manual code review, managing resources for scale is
critical. Focusing on specific vulnerability types, critical components requiring more
rigor due to their mission critical nature, or a combination of the two, is recommended to
manage scale and costs.

Manual source code review can be a complementary technique to help understand
software. It can be used for checking coding style to better understand the developer’s
capabilities, identifying a “top” set of vulnerabilities/weaknesses for corrective action,
design validation (e.g., to check the implementation of memory allocation or input
validation), configuration, interface requirements validation, review of attack surface,
including input/output path analysis, and much more. Manual code review, in cases
where the components are critical, can be used as a redundant technique to greatly reduce
human error.

c. Applicability

Since the advantage and disadvantage of manual source code analysis is the
dependency on the involvement of a human reviewer, there is a direct correlation
between the results yielded and the reviewer’s experience with specific technologies,
mission/system knowledge, architecture, and various attack/threat scenarios, as well as
real-time feedback, including recommendations.

An advantage of manual source code analysis is that humans can be very good at
correlation, synthesis, and impact analysis, taking into account a variety of contextual
information including system, threat, and vulnerability information.

Code reviewing is more expensive than many other approaches, so it is often used
for critical components or processes in a system where other techniques are not able to
provide the comprehensive coverage that may be required.

One should be cautious in that manual review does introduce human error, and thus,
some errors may not detected. Also, the reviewer is susceptible to fatigue and possibly
boredom, creating the potential for inefficiencies and error.

Some of the many articles that this discuss this include [Chmielewski 2013] and
[Kesäniemi 2009].

d. Assessment

Pros:

 Depending on the level of effort and focus of manual source code review, it can
be quite effective in detecting specific weaknesses.

 C-36

 It enables the use of continuous learning, impact analysis, feedback, and
recommendation approaches, which are decided advantages of using human
review.

 It has a low false positive rate.

Cons:

 Scaling can still be an issue depending on the complexity of the code built.

 Personnel training and knowledgebase must be continuously improved to keep
pace with context and updates to software.

 Reviewers are susceptible to fatigue and boredom, reducing its effectiveness.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Changes to the software may require continuous monitoring of the code, thus
making it a recurring activity and thus a recurring cost.

− Continuous training of developers/analysts to expand the knowledgebase on
new weakness or non-compliance issues.

− Outsourcing (if applicable of the spot check) to a third-party assessor.

f. Examples of Suppliers/Products

Not applicable.

16. IEEE 1028 Inspections

a. Overview

An IEEE 1028 inspection is a systematic peer examination to detect and identify
software product anomalies.

b. Details

Inspections, as defined by IEEE Standard 1028, include two to six human
participants (including the author) with a rigorous set of roles and processes. The
inspection team includes one or more “readers” who lead “the inspection team through

 C-37

the software product in a comprehensive and logical fashion, interpreting sections of the
work (for example, generally paraphrasing groups of one to three lines), and highlighting
important aspects. It also includes the “author” who is responsible for contributing to the
inspection (based on special understanding) and performing any required rework. [IEEE
2008]

Typical inspection rates are two to three pages per hour for requirements, three to
four pages per hour for designs, 100 to 200 lines per hour for source code, and five to
seven pages per hour for test plans.

Numerous scientific experiments have shown that inspections can be very effective
at finding defects when measured in terms of defects found per hour invested (see
[Wheeler 1996] for information on these experiments and other related information).

c. Applicability

IEEE 1028 inspections can be applied to any software product, including
requirements, design, source code, and test plans.

Generally inspections are applied by teams during development, and IEEE 1028
inspections include the author as a required participant. There is little experience in using
inspections without participation by an author.

d. Assessment

Pros:

 IEEE 1028 inspections are effective in finding defects in terms of defects per
hour invested (figures vary, but often one defect is found per hour invested).

 Inspections can be applied early in the development lifecycle.

Cons:

 Significant effort and time are needed to perform inspections.

 It can be difficult to get willing and competent participants.

 Inspection requires author participation and detailed knowledge by other
participants. Thus, while it is used in some development processes, it is not
usually used (or useful) for third-party evaluation (other than to determine
whether they have been done).

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

 C-38

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Usage effort. This includes setting up the configuration, running the tool,
and reviewing the results to determine what vulnerabilities are applicable
and their priority.

f. Examples of Suppliers/Products

This is not a “product” in the traditional sense, so listing suppliers is not relevant.

17. Generated Code Inspection

a. Overview

This technique examines generated binary or bytecode to determine that it
accurately represents the source code.

b. Details

This process can detect some cases in which a compiler has “optimized away” and
incorrectly implemented important functionality. In particular, it is sometimes important
to erase sensitive information (such as unencrypted keys, passwords, and similar sensitive
data), but modern compilers will sometimes “optimize away” the erasure code because
they detect that the data is not directly used afterwards. Generated code inspection can be
used to ensure that the data is actually being erased. If a compiler or later process inserts
malicious code, this technique may also detect it.

This process is usually a spot check (e.g., on key or suspicious areas) and not
performed across all of the code. However, it could be performed across all code if this
were considered necessary.

Some compilers have options to simplify this analysis, by generating information to
simplify human comparison.

c. Applicability

These tools require source code and the resulting executable (bytecode or binary
code).

 C-39

d. Assessment

Pros:

 The approach can reveal malicious and unintentional vulnerabilities that are
difficult to find in many other ways.

Cons:

 It requires in-depth knowledge of the executable format, as well as that of the
source language; many developers do not have this knowledge.

 It is expensive if applied in more than a few selected places.

 Later recompilation reduces the credibility of the results, especially if the build
environment has changed significantly.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Training, including costs for training, and the time of those receiving the
training. Practically using these tools requires some knowledge to
understand the tool results, including how to filter out false positives and
configure the tool to quickly produce expected results.

 Recurring resource requirements:

− Analysis of each position.

f. Examples of Suppliers/Products

This technique typically uses tools already available, e.g., compilers or disassemblers.

18. Safer Languages

a. Overview

Choosing safer languages is the selection of languages, or language subsets, that
eliminate or make it more difficult to inadvertently insert vulnerabilities. This includes
the selection of memory-safe and type-safe languages.

b. Details

Choosing safer languages including the selection of a language developed to
limit/reduce the number of inherent limitations that cause quality and security flaws in
the system code.

 C-40

Computer languages that support mechanisms such as array access outside array
boundaries, arbitrary pointer arithmetic, arbitrary type casting, and manual memory
management, are generally not considered safe. Examples of unsafe languages include
C, C++, and Objective-C. Issues that can arise from a lack of safety include buffer
overflow, dynamic memory errors, dangling pointers, and uninitialized variables.

In contrast, languages can be designed to counter common problems. For example,
type-safe languages counter some erroneous or undesirable program behavior that can be
caused by, for example, a discrepancy between how a data value is initialized versus how
it is later used. Type safety can be static (declared in program text) or dynamic (checked
at run-time).

Most other languages provide stronger safety characteristics. Languages that are
typically considered safe include Java, C#, Ada, and Python. Most languages have
mechanisms to temporarily disable safety mechanisms, but these can be strongly
localized. The way you evaluate a language varies depending on the extent to which the
context dictates safe construction and what performance characteristics the language type
can provide to ensure mission/operational requirements are met.

c. Applicability

Languages are chosen relatively early in the software development lifecycle, as part
of design. It is best to identify, during requirements definition, the language requirements
to improve the assurance characteristics of the resulting software. This can occur during
the first-time build (green-field) of a software system, or during transformation of a
legacy system from a “less safe language” (e.g., C, C++, and Objective-C) to a “safer
language” (e.g., Java and C#).

d. Assessment

No language is perfect. Every language has inherent flaws or characteristics that
make it either ideal or not ideal as a platform of choice for building or transforming
software systems with limited security or quality flaws. Selecting safer languages
improves the quality of the implementation and operation of software systems.

Whether addressing a green-field development or existing operational system
requiring transformation, limitations such as budgets, resources, knowledge, skills, and
timelines, can limit the language type used. Each context must be addressed considering
the mission and assurance requirements for the system.

Note that a change in language platform is likely to be dictated by function or
mission needs, and not by assurance.

http://en.wikipedia.org/wiki/Pointer_%28computer_programming%29
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Dangling_pointer

 C-41

e. Resource Requirements

 Developers/analysts with knowledge of the language platform chosen,

 Training to identify the best suited language for the context of the software
system being built or transformed, and then training in the actual language
selected if necessary,

 Tools to support the selected language(s).

f. Examples of Suppliers/Products

These are essentially the suppliers of various compilers and interpreters.

19. Secure Library Selection

a. Overview

Secure libraries provide mechanisms designed to simplify developing secure
applications. They may be stand-alone or be built into larger libraries and platforms.

b. Details

Secure libraries include mechanisms such as tools to authenticate users, encrypt and
manage sessions, validate specific types of common input (e.g., email addresses, URLs,
and HTML data), invoke other tools without risking injection attacks, and filter
information back.

Developers can, of course, implement such mechanisms themselves, but many
developers do not have the necessary background to correctly implement them. What’s
more, by concentrating such functionality into a library used by many developers, any
improvements or time spent on the library has the potential to aid many programs.

The divide between “secure libraries” and other kinds of libraries is necessarily
porous, since such libraries can be embedded in larger libraries, and traditional libraries
are often extended with additional functionality that may include security functionality.

Libraries should be updated as new versions become available and old ones stop
being maintained. This is particularly important if a vulnerability is fixed in a library.
Pedigree analysis, discussed separately, can identify libraries that are obsolete or
vulnerable.

c. Applicability

Secure libraries must be used to have any positive effect, so they must be made
available to developers during design and implementation. Typically this cannot be done
with third-party off-the-shelf-components without effort.

 C-42

d. Assessment

Pros:

 Secure libraries concentrate common needs in one place, so that experts can
focus on doing it correctly in one place and any corrections will apply to many
applications.

 They can reduce development time and effort.

Cons:

 Typically impractical to retrofit on third-party software, and requires effort to
retrofit existing software to use them.

 A vulnerability in the library can have wide effects (although once found, its
repair also has wide effects).

 Libraries must be kept up-to-date.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Annual maintenance fees, depending on the library.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name Languages Supported URL

Apache Shiro Java http://shiro.apache.org/

OWASP OWASP

Enterprise

Security API)

Java; many others in

various stages of maturity

https://www.owasp.org/index.php

/Category:OWASP_Enterprise_S

ecurity_API

 C-43

20. Secured Operating System Overview

a. Overview

A secured operating system (OS) is an underlying operating system and platform
that is hardened to reduce the number, exploitability, and impact of vulnerabilities.

b. Details

A secured operating system and platform typically uses a variety of mechanisms to
counter adversaries. These include:

 Minimizing the attack surface (the available vectors of attack) by avoiding the
installation of unnecessary software and services, removing unnecessary
software or services, reducing the number of authorized users, reducing user and
program privileges, closing network ports, and so on. Splitting systems into
multiple single-function systems often aids this, since each single-function
system can have a much smaller set of permitted functions.

 Enabling address space layout randomization (ASLR), which hinders some
attacks by making it more difficult for an attacker to predict system addresses.
Note that on some platforms executables must be created in a certain way to take
advantage, or full advantage, of ASLR, though this is usually not difficult to do
if the source code is available.

 Using specially-devised operating systems and platforms with a small verified
trusted computing base (TCB) at higher levels of assurance.

Note that this is merely a sample of mechanisms, not a complete list.

c. Applicability

Applying a secured operating system or platform is broadly applicable to any
software. Sometimes a vulnerability built into an application program can be countered,
or at least have its impact reduced, through the use of a secure operating system.

However, there are significant limits to what this approach can achieve. While a
secured operating system or platform can counter some vulnerabilities, there are many
others they cannot counter.

Specially-devised operating systems can be developed as high assurance (HA)
systems. These are typically implemented using a small TCB that can be examined in
detail. These can provide stronger defenses, but since these often trade away
functionality for security, applications must often be specifically designed to work on
them. Different products provide varying levels of this trade-off.

 C-44

d. Assessment

Pros:

 It quickly provides some additional protective measures.

Cons:

 It can only provide limited defenses for applications with vulnerabilities.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Annual maintenance fees, depending on the library.

f. Examples of Suppliers/Products

All operating systems and platforms provide some hardening mechanisms, so there
is little point in listing them.

21. Origin Analyzer

a. Overview

Origin analyzers are tools that analyze source code, bytecode, or binary code to
determine their origins (e.g., pedigree and version). From this information, some
estimate of riskiness may be determined, including the potential identification of
obsolete/vulnerable libraries and reused code.

b. Details

Software is typically developed from many sub-components, including embedded
libraries. Tools can be used to examine software by comparing pieces of the software
with databases of known software components and libraries to determine information
such as pedigree and version. This can be done with source code, bytecodes, or binaries;
it is typically more difficult to match binaries (even when there are matches).

 C-45

A common use of such tools is to determine license compliance for open source
software. Open source software licenses permit many uses, but typically impose some
license requirements depending on the license. By comparing software to a database of
open source software, it is sometimes possible to determine the origins and versions, and
thus identify licenses not previously disclosed. In theory such license analysis would
apply to any software, but it is relatively easy to create a database of publicly released
open source software, and much more difficult to create a database of proprietary and
custom software. Companies have worked to extend their databases with the latter, but
they will typically have far more information available on open source software.
However, since these tools can more broadly identify software sub-components, the tools
can be used for purposes other than license compliance.

One use is pedigree analysis, that is, determining the original origin of the software
and possibly how it ended up in this software. The origin of that software may help risk
assessment (e.g., if that origin has known additional risks or is especially reliable).

Another use is to identify obsolete and/or known vulnerable libraries and reused
code. A recent study [Williams 2012] provides strong evidence that application
developers often do not update the libraries they use. “If people were updating their
libraries, [older libraries’ popularity would] drop to zero within the first two years. [But
popularity extends] over six years. One possible explanation is that some projects,
perhaps new development efforts, tend to use the latest version of a library [and then]
incremental releases of legacy applications are not being updated to use the latest
versions of libraries….” Such tools can identify libraries (including deeply embedded
libraries) that have known vulnerabilities. Such vulnerabilities may or may not be
exploitable, but the presence of known-vulnerable libraries can serve as a warning for
potential problems that can be investigated further.

c. Applicability

These analyses can be applied to any software, including third-party proprietary
software. If the analysis reports significant use of obsolete or known-vulnerable
software, it suggests an increased risk in using the software.

d. Assessment

Pros:

 Origin analyzers can be applied to any software, including third-party
proprietary software.

Cons:

 They will not identify libraries not in the database. Thus, these tools are
especially likely to identify publicly released open source software, less likely to

 C-46

identify third-party proprietary software, and even less likely to identify
internally developed custom libraries.

 Only libraries with known vulnerabilities can be identified as such.

 Vulnerabilities in code outside the comparison database cannot be reported.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees,

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Annual maintenance fees.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Black Duck

Software

Black Duck®

Protex™

http://www.blackducksoftware.c

om/products/black-duck-

suite/protex

Palamida Palamida

Enterprise Edition

http://www.palamida.com/produ

cts/enterpriseedition

Tjaldur

Software

Governance

Solutions

Binary Analysis

Tool (BAT)

http://www.binaryanalysis.org/e

n/home

Sonatype Component

Lifecycle

Management

(CLM)

http://www.sonatype.com/clm/o

verview

OWASP Dependency-

Check

https://www.owasp.org/index.ph

p/OWASP_Dependency_Check

Assured

Enterprises Inc.

AssuredScanDKV https://www.assured.enterprises

/cyber-products/

Contrast

Security

Contrast https://www.contrastsecurity.co

m/

https://www.contrastsecurity.com/
https://www.contrastsecurity.com/

 C-47

22. Digital Signature Verification

a. Overview

Digital signature verification ensures that software is verified as being from the
authorized source (and has not been tampered with since its development). This typically
involves checking cryptographic signatures.

b. Details

Digital signatures are used as a mechanism to authenticate data or program files that
may be distributed for deployment and use. For example, most program updates are
digitally signed. Digital signatures help to establish the authenticity, integrity, and non-
repudiation of the data or program files provided.

To validate that the content is authentic, has not changed, and is from the authorized
originator, a number of things must be ensured. Is the digital signature valid? Is the
certificate for the digital signature current and not expired? Is the signer trusted, and is
the organization that vouches for the signer (the certificate authority (CA)) reputable? A
common CA for commercial implementations is Verisign; in the case of the DoD, the CA
may be the Defense Information Systems Agency (DISA).

A number of automated tools can be used to digitally sign and also to verify the
digital signature authenticity. Digital signatures can be countered by attackers, e.g., an
attacker might be able to acquire the private key of an originator or subvert a CA.
Nevertheless, digital signatures enable strong verification.

This is a well-understood mechanism; additional descriptions are widely available,
such as in [Microsoft Signature] and [Oracle Signature].

c. Applicability

Digital signatures are widely used as a method of verification of authenticity for
software update, file transfers, and much more. It is the standard way to verify that any
software updates originate from the expected source.

d. Assessment

Digital signing and verification of signature are commodity capabilities that are
widely available as open source software or proprietary implementations. For assurance,
digital signing and verification mechanisms are a means for managing software integrity
throughout the software development lifecycle (SDLC), especially as acceptance criteria
for software delivery.

 C-48

e. Resource Requirements

 Digital signature acquisition

 Valid Certificate authority

 Tools needed to verify the authenticity of the digital signature.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Microsoft SignTool.exe http://msdn.microsoft.com/en-

us/library/8s9b9yaz.aspx

Symantec Symantec Code

Signing

Certificates

http://www.symantec.com/code-

signing

Oracle jarsigner - JAR

Signing and

Verification Tool

http://docs.oracle.com/javase/6/d

ocs/technotes/tools/windows/jars

igner.html

E-Lock E-Lock Reader -

Digital Signature

Verification Tool

http://www.elock.com/reader.htm

l#.Ua3SM9gr7PM

Ascertia digital signature

verification

http://www.ascertia.com/index.as

px

OpenSSL

Project

OpenSSL http://www.openssl.org/

23. Configuration Checker

a. Overview

Configuration checkers assess the configuration of software to ensure that it meets
requirements, including security requirements. A configuration is the set of settings that
determine how the software is accessed, protected, and operates.

b. Details

Software can have many configuration settings, including ones that impact
functionality, security, and safety. Many configuration settings provide protection or
enable services within the software. Depending on system policy and functional
requirements, the configuration may change.

 C-49

Many tools are available that can check software configurations. Checking can also
be done using manual processes. Either approach typically accesses and analyzes
configuration files that are generally part of the software system and vary vastly
dependent on the software environment and type of software (e.g., operating system,
middleware, or application).

Configuration checkers are related to hardening tools/scripts. However, hardening
tools/scripts can also automatically modify the configurations to improve security and
meet policy.

c. Applicability

Configuration checkers apply to any software. There are often OTS configuration
checkers for OTS software; custom software configurations can also be checked, but
someone must determine the rules to be checked.

d. Assessment

Whether using manual or tools-based configuration checking, this must be
performed and periodically reviewed to maintain software assurance. Poor configuration
may lead to unauthorized access by an adversary. The cost of checking configuration is
minimal compared to the potential impact of not doing it.

This approach should balance security and functionality so that adequate protection
can be administered while not inhibiting system functionality.

e. Resource Requirements

Resource requirements are minimal for doing configuration checking.

 Both enterprise and development tools can assist in extracting the relevant
information to assess the configuration of the system and its components.

 Training for human resource to complete configuration checking is minimal.
Most developers and administrators are hired with this skill intact.

f. Examples of Suppliers/Products

The following is an example of a suppliers and their product. This example is
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

GlobalSign SSL

Configuration

Checker

https://sslcheck.globalsign.com/e

n_US

 C-50

24. Permission Manifest Analyzer

a. Overview

Permission manifest analyzers are tools that analyze the application’s permission
manifest and estimate level of risk (possibly using policy requirements to determine what
is more or less risky).

b. Details

This is similar to a configuration checker, in that it examines a small set of data to
warn of potential problems. For example, if an application has access to the microphone,
audio, network, and location, it typically presents a far greater risk to the user (e.g., as
spyware) than an application with none of those permissions. There are many variations,
e.g., C-Ray (among other functions it performs) gives a summary of the security posture
and permissions on each of the activities exposed by the application.

c. Applicability

This type of tool/technique requires that there be a permission manifest (e.g., such
as Android’s). This tool/technique type only examines a small set of data at a gross level,
so although it can warn of a few risks, it cannot identify many potential security
problems.

Actual tools can include many tool/technique types; this is especially true for this
tool/technique type, since the information from a permission manifest may be the basis
for other kinds of analysis.

d. Assessment

Pros:

 Simple and easy to apply.

Cons:

 They do not directly find vulnerabilities, but instead warn of potentially high-
risk sets of permissions.

 Cannot find most problems.

e. Resource Requirements

These have relatively low resource requirements.

 C-51

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

C-Ray Project C-Ray https://code.google.com/p/c-

ray/wiki/Introduction

25. Development/Sustainment Version Control

a. Overview

Development and sustainment activities are typically supported by version control
tools that record and track who made exactly what change and when the change was
made. This information can ease identification of who may have inserted vulnerabilities
(unintentional or malicious). Version control creates a deterrent for inserting
vulnerabilities and a starting point for remediation.

b. Details

A variety of tools have been developed to enable multiple developers to work
together when revising software and to quickly make changes, record them, merge them,
and roll them back if they turn out to be problematic. Even developers working alone
often find such tools helpful. Such tools are called version control, revision control, and
configuration management tools (though in many cases “configuration management”
refers to a larger set of processes and goals).

For assurance, version control creates a deterrent for inserting vulnerabilities and a
starting point for remediation. Once a vulnerability is detected, version control enables
quick identification of who caused it (the real or the spoofed identity), and when it
occurred. With this information, related changes (e.g., other changes by that individual)
can be traced and examined, and if necessary, remediated.

Version control systems are often deployed in ways that presume that SDLC
participants are not malicious. If they could be malicious, the tools must often be
additionally configured and/or hardened (e.g., every developer must be assigned a digital
signature, and the tool must require these signatures). It may not be possible to do this
with older tools that are not being robustly maintained.

Historically, most version control systems were centralized, that is, they depended
on a single central repository that stores the history of changes. More recently distributed

 C-52

version control systems (such as “git”) have been developed; these enable disconnected
operations (e.g., due to lack of network connectivity or because of classification and
export control restrictions).

c. Applicability

These tools are typically used during development and sustainment. They could in
some cases be used through operations as well, but this is not as widely practiced;
configuration management of operational software or systems is often accomplished by
different sets of tools.

Assessors may examine this version control data, when they can obtain it, to assess
likelihood and impact of inadequate assurance. For this to be useful for assurance, the
version control data must be trustworthy.

d. Assessment

Pros:

 Such tools are already in use in most organizations, and configuring them to deal
with malicious developers is often not a difficult extra step.

 They provide a deterrent against individuals inserting intentional vulnerabilities,
and inserting an unusually large number of unintentional vulnerabilities, by
making it easy to track down who did it when.

 They simplify triage to identify a single malicious developer, since all the
changes that particular developer made can be identified.

Cons:

 Although proprietary COTS developers are likely to use such tools, they often
do not wish to reveal much of the data they manage, because this reveals the
entire source code suite, as well as much about the organization.

 The tools do not help against a malicious organization, which can forge the
version control history.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees,

− Training, including costs for training, and the time of those receiving the
training.

 C-53

 Recurring resource requirements:

− Annual maintenance fees,

− Usage effort. This includes setting up the configuration, running the tool,
and reviewing the results to determine what vulnerabilities are applicable
and their priority.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Software

Freedom

Conservancy

git http://git-scm.com/

Apache

Software

Foundation

subversion http://subversion.apache.org/

Perforce

Software Inc.

Perforce http://www.perforce.com/

IBM Rational ClearCase http://www-

03.ibm.com/software/products/us

/en/clearcase/

Microsoft Team

Foundation

Server (TFS)

http://tfs.visualstudio.com/

Note that many older projects use older version control tools that are not as actively

maintained. These older tools include Concurrent Versions System (CVS) and Microsoft
Visual SourceSafe (VSS) 2005 (retired from mainstream support on 10 July 2012 with
extended support ending on 11 July 2017).

26. Obfuscator

a. Overview

An obfuscator tool takes source, bytecode, or binary and transforms it into
something difficult to understand or reverse-engineer. Such tools use approaches to
obfuscate code, possibly including the use of reflection and the unnecessary use of native
code.

 C-54

b. Details

Obfuscators are used to make source, binary or byte code more difficult to
understand, decompile, or reverse-engineer. Obfuscators can also be used to make it
difficult for applications (including enterprise and mobile) to be changed or manipulated
in ways not authorized by the original developer. However, the use of obfuscators also
makes it more difficult for downstream users to examine the software to determine their
risks.

Mobile application providers may use obfuscators as a way to not only protect their
intellectual property but also against the prying hands of potential threat agents. Mobile
applications are not only touched by the developer of the applications but also a number
of third parties including third-party evaluators, third-party application stores, and users.
Obfuscation can be used as a means of protection as the applications traverse the various
organizations affecting the application.

c. Applicability

Obfuscators can be applied to any application, with the caveat that the results are
more difficult to examine downstream for risk.

d. Assessment

Pros:

 Fast ramp-up for use, and cost effective.

Cons:

 Limits transparency by those who need to test the application by using the
obfuscated version.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Small investment for licensing.

 Recurring resource requirements:

− Annual maintenance fees are often minimal to none.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

 C-55

Supplier Product Name

Language or

Application Type URL

Preemptive

Solutions

DASHO Android https://www.preemptive.com/solu

tions/android-obfuscation

Arxan GuardIT Android http://www.arxan.com/products/g

uardit/

ProGuard ProGuard Java http://proguard.sourceforge.net/

27. Rebuild and Compare

a. Overview

The rebuild and compare technique rebuilds a bytecode or binary from its purported
source code, and then determines whether the rebuilt version is equivalent to the bytecode
or binary provided. If it is, then the bytecode or binary corresponds to its purported
source code (given certain assumptions).

b. Details

Many evaluation approaches examine source code, but such examinations have little
value if the source code evaluated does not correspond to the bytecode or binary actually
executed. If the bytecode or binary does not correspond to the source code, then what is
evaluated might be unrelated to what is used.

The rebuild and compare technique rebuilds a bytecode or binary from its purported
source code, and then determines whether the rebuilt version is equivalent to the bytecode
or binary provided. If they are equivalent, then the integrity of the bytecode or binary is
confirmed (presuming that the build environment is not malicious). Otherwise, someone
may have maliciously inserted an attack into the bytecode or binary that is not in the
original source code.

A challenge is the amount of information required for this technique. This
technique requires not just the source code of a program (as the term is typically
described), but also the build instructions used to create the bytecode or binary, as well as
very detailed information about the system being used to build it (e.g., such as the exact
version and configuration of all compilers in use). In many situations there will be
differences (e.g., there may be embedded time/datestamps), in which case, all differences
must be examined and accounted for, which may require detailed knowledge of the build
system. More information can be found at the reproducible builds website.11

11 https://reproducible-builds.org/

https://reproducible-builds.org/

 C-56

c. Applicability

This technique only applies where there are bytecodes or binaries. If the source
code is executed directed (e.g., through an interpreter), this approach is irrelevant.

The technique applies to typical application software, but it cannot be directly
applied to development tools to counter malicious subversion. This is because
development tools can subvert their own development.12

d. Assessment

Pros:

 The technique provides strong evidence that source code evaluations are
justified.

 It is easily automated once the initial correspondence is established.

Cons:

 It requires source code and very detailed information about the build
environment.

 In practice, it may require changes to the build environment to establish the
detailed build environment information.13

 It can be difficult to establish initial correspondence, especially for large legacy
systems with many subcomponents.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Acquiring detailed build environment information and the tools necessary to
reproduce the build environment,

− Tracking down and repairing any identified differences.

12This problem – the difficulty of applying the “rebuild and compare” approach to development tools and

environments – is sometimes known as the “trusting trust” problem [Thompson1984]. Recent research
has identified a related technique, called “diverse double-compiling” (DDC), which can be used to
determine whether development tools (such as compilers) correspond to their source code [Wheeler
2009]. Full disclosure: One of the authors of this description named and wrote the defining research on
DDC.

13These build environment changes may, in fact, have long-term benefits. The build environment may be
old and/or depend on old equipment. Updating to a newer build environment may establish detailed
build environment information, while also providing a faster build environment with fewer defects.

 C-57

 Recurring resource requirements:

− Examining and justifying differences.

f. Examples of Suppliers/Products

Since this is a process that reuses existing build tools, a list of suppliers/products is
not appropriate.

28. Assurance Case

a. Overview

An assurance case is “a documented body of evidence that provides a convincing
and valid argument that a specified set of critical claims regarding a system’s [security]
properties are adequately justified for a given application in a given environment”
[IATAC 2007].

b. Details

A software assurance case is an evidence-based approach that shows, in a well-
structured way, how evidence can be combined using various arguments to support key
claims. There are a number of standards in various stage of development/completion that
can provide a framework for building an assurance case. This framework generally has
three major categories that the assurance case is built on: claims, arguments, and
evidence. See [NDIA 2008] for a discussion on assurance cases, including how they
apply to the DoD System Lifecycle. See also [Rhodes 2009].

Assurance cases have been widely used to develop safety cases. Those with
experience in doing safety cases should be able to ramp up quickly to apply assurance
cases to security issues.

c. Applicability

An assurance case can be applied broadly across a system or applied to a specific
component. It can also be applied at a high level, as a quick analysis, or applied in depth.
The appropriate breadth and depth depends on the criticality of the components being
analyzed and the resource limitations (time and money).

Tools are helpful in developing and maintaining large assurance cases.

 C-58

d. Assessment

Pros:

 An assurance case helps organize a variety of evidence into a coherent and
traceable justification for important claims.

Cons:

 It requires special training and skills to build an assurance case.

 The tools require licensing, learning, and implementing.

 Systems change; to be useful, an assurance case must be maintained in parallel
with the system’s evolution.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees for assurance case tools,

− Hiring and or training of individuals on security assurance case
development.

 Recurring resource requirements:

− Annual maintenance fees,

− Continued assurance case development and updates as changes in and to
system and critical components occur.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name Description URL

Adelard

ASCE ASCAD (Claims

Arguments Evidence)

and GSN (Goal

Structuring Notation)

http://www.adelard.com/index.ht

ml

Praxis

eSafetyCase GSN (Goal Structuring

Notation)

http://www.praxis-his.com/

http://www.adelard.com/
http://www.adelard.com/web/hnav/ASCE/
http://www.praxis-his.com/

 C-59

29. Formal Methods/Correct by Construction

a. Overview

Formal methods use mathematically rigorous techniques and tools for specification,
development, and verification of software and hardware systems [Butler]. We use the
term “formal method” in this document synonymously with the term “correct by
construction,” although there are several different definitions for both terms.

b. Details

These techniques use mathematically rigorous techniques and tools, enabling the
proofs of claims given certain assumptions. The term “mathematically rigorous” means
that specifications are well-formed statements in a mathematical logic, and that the
formal verifications (if any) are rigorous deductions in that logic.

At its most rigorous, the system is completely specific, developed, and verified that
it will meet its specifications in all cases. In practice, this is difficult and expensive to do,
especially for non-trivial programs, so various approaches are typically used to reduce the
effort necessary. Three levels are often identified:

 Level 0: A formal specification is created, then a program is informally
developed from it. This is sometimes called “Formal methods lite.”

 Level 1: Level 0, and then prove some selected properties or perform formal
refinement of the specification.

 Level 2: Fully prove claims, which are mechanically checked.

Typically only a specific (especially critical) piece is subjected to this level of rigor.

c. Applicability

It is impractical, with today’s technology, to apply these approaches after-the-fact to
most pre-existing software. Instead, the software must be developed specifically to
support such analysis, enabling the use of such tools.

This means that in practice, formal methods are as much a development process as
an evaluation process. Additionally, formal methods can provide very strong evidence
for meeting some technical objectives, but their costs often deter their use. As a result,
although we list them as a tool/technique, we do not list them in the “Software SOAR
Matrix” described in Chapter 3.

 C-60

d. Assessment

Pros:

 It provides the strongest evidence available that the software meets the
specification. This is particularly true of level 2.

Cons:

 It is typically costly and time-consuming, particularly at level 2. Approaches do
exist that reduce cost and time, but they may reduce rigor or impose important
limitations (e.g., some tools cannot handle dynamically allocated constructs,
which limits their applicability).

 It typically requires strong knowledge of discrete mathematics; such expertise is
relatively scarce, especially in the United States.

 It requires significant training. The tools typically require a significant amount
of time to master.

 The resulting justifications are only as good as their assumptions.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Training, including costs for training, and the time of those receiving the
training. These are often very significant.

 Recurring resource requirements:

− Usage effort. This is significant even for level 0, and can increase
dramatically at higher levels.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

 C-61

Supplier Product Name Languages Supported URL

AdaCore /

Altran

SPARK Pro SPARK http://www.adacore.com/sparkpr

o

Toccata

project

Why3 Why3 (directly); C, Java http://why3.lri.fr/

ADT Coq

(Action for

Technological

Development)

Coq Gallina specification

language (Coq-specific)

http://coq.inria.fr/

30. Network Scanner

a. Overview

A network scanner (for purposes of this paper) identifies network components
(nodes) and network connections (ports) by actively interacting with other network
components on the network. Using a network scanner is often a first step in using other
tools, such as network vulnerability scanners and intrusion detection systems (IDS), and
they are often packaged together.

b. Details

Network scanners are used for network discovery and port scanning of nodes in the
network to provide basic information about them. Network scanners can be used to:

 Identify hosts on the network and establish a network or subnet maps,

 Scan ports for open/closed status and any changes to the port at the time of
analysis.

In addition, network scanners can often use this information to:

 Determine operating system characteristics using host detection mechanisms,

 Check version numbers of the applications residing on the hosts.

Network scanners can provide a useful starting set of information about an
application’s attack surface, before using deeper analysis tools.

A network scanner can only report on currently enabled nodes and ports; a port that
is open only sometimes, but not at the time of the scan, will not be reported as open.

c. Applicability

A network scanner can analyze its network surroundings and provide some detail on
the various components on which the software system depends (e.g., their configurations,
the operating system it sits on top of, and the surrounding network-accessible

 C-62

applications that it may have a dependency on). A scanner can be a quick way to
inventory the assets on which a software system depends, helping to produce a quick risk
profile of risks due to changes in configuration or version changes.

A scanner can help provide a summary view of a system or application’s network
attack surface. However, it will typically provide little insight into intentionally
malicious behavior, since such software can simply wait to open a port at some future
time.

These tools can only provide basic information about the node and port (e.g., the
type of operating system in use and the port). For example, a web server often has port
80 open; a network scanner could report this, but not by itself determine whether
vulnerable applications are accessible on that port. That said, a network scanner is often
paired with other functionality that can do deeper analysis. Some tools bundle in this
functionality as a first step in applying other analysis approaches.

d. Assessment

Pros:

 These tools are helpful in quickly finding network nodes and ports.

 They enable review of possible access points for breach or policy violations.

Cons:

 They provide limited knowledge; by themselves they only provide information
focused at network and node inventory (they are often paired with other
functionality for deeper analysis).

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Training, including costs for training, and the time of those receiving the
training. Practically using these tools requires some knowledge to
understand the tool results.

 Recurring resource requirements:

− Reviewing periodic results.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

 C-63

Supplier Product Name URL

Nmap.org nmap http://nmap.org

Gibson Research

Corporation

(GRC)

Shields up

(online port

scanning

service)

https://www.grc.com/x/ne.dll?bh0

bkyd2

31. Network Sniffer

a. Overview

A network sniffer (also called a packet analyzer) observes and records network
traffic. This information can then be analyzed to identify unexpected network traffic,
perform trend analysis, and so on.

b. Details

A network sniffer monitors packets flowing over network/subnets, examining
network traffic by making a copy of the data for analysis but without redirecting or
altering it.

It can be used for analyzing network problems such as bandwidth utilization,
unusual and unusual amounts of traffic, network intrusion attempts, misuses in the
network by both internal and external users, filtering of suspect content from packets, and
unwanted “call home” functionality. It can also collect login data/user cookies for further
analysis. Network sniffers sometimes detect characteristics that may indicate the
potential for man-in-the-middle attacks, e.g., the lack of Secure Socket Layer/Transport
Layer Security (SSL/TLS) authentication, poor keys, or poor encryption algorithms.

c. Applicability

Sniffers apply to software that produces or consumes network traffic.

d. Assessment

Although sniffers are not the first tools one thinks of when addressing assurance,
sniffers by themselves provide some data regarding network traffic, and perhaps some
information regarding the potential impact on the end system consuming the traffic.
These tools provide a way to analyze potential intrusion attempts, including suspect
content originating from or destined to a software system/application.

 C-64

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

 Recurring resource requirements:

− Annual maintenance fees,

− Usage effort. This includes setting up the configuration, running the tool,
and reviewing the results to determine anomalies in network traffic.

f. Examples of Suppliers/Products

The following are examples of products. These examples are provided to help
readers understand this tool/technology type. This list is illustrative, and no endorsement
is implied.

Supplier Product Name URL

Colasoft Capsa Network

Analyzer

http://www.colasoft.com/capsa/

Massimiliano
Montoro

Cain and Abel

(password

recovery tool

for Microsoft

operating

systems,

includes

sniffing)

http://www.oxid.it/cain.html

Dug Song dSniff http://www.monkey.org/~dugson

g/dsniff/

Telerik Fiddler http://www.telerik.com/fiddler

Microsoft Microsoft

Message

Analyzer

http://www.microsoft.com/en-

us/download/details.aspx?id=40

308

Sky software SkyGrabber;

LanGrabber

http://www.skygrabber.com/en/in

dex.php

Oracle snoop (in

Solaris)

http://docs.oracle.com/cd/E2382

4_01/html/821-1453/gexkw.html

Tcpdump (project) tcpdump http://www.tcpdump.org/

Wireshark (project) Wireshark

(formerly

known as

Ethereal).

https://www.wireshark.org/

http://en.wikipedia.org/wiki/Capsa
http://en.wikipedia.org/wiki/Cain_and_Abel_%28software%29
http://en.wikipedia.org/wiki/DSniff
http://en.wikipedia.org/wiki/Fiddler_%28software%29
http://en.wikipedia.org/w/index.php?title=Microsoft_Message_Analyzer&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Microsoft_Message_Analyzer&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Microsoft_Message_Analyzer&action=edit&redlink=1
http://en.wikipedia.org/wiki/SkyGrabber
http://en.wikipedia.org/wiki/Snoop_%28software%29
http://en.wikipedia.org/wiki/Tcpdump
http://en.wikipedia.org/wiki/Wireshark

 C-65

As of 2014-03-10, the following web pages list a number of network sniffers:
http://en.wikipedia.org/wiki/Packet_analyzer and http://sectools.org/tag/sniffers/.

32. Network Vulnerability Scanner

a. Overview

For the purpose of this paper, a network vulnerability scanner examines a system
through its network interface (e.g., its network ports) to identify known vulnerabilities.

b. Details

A network vulnerability scanner sends messages to the various network ports of a
system and examines the results to determine whether the system being examined has any
known vulnerabilities. In particular, a scanner attempts to identify services whose
implementation has known vulnerabilities (e.g., an obsolete web server with a known
vulnerability) and any indicators of an insecure configuration.

A network vulnerability scanner may be used in tandem with other tools. For
example, a network vulnerability scanner may be used after a network sniffer and scanner
identifies the system for further analysis. If a network vulnerability scanner does not
identify a known vulnerability, an application-type-specific vulnerability scanner may
search for vulnerabilities that are not already known. Tool implementations may
combine techniques.

More information about network vulnerability scanners is available in a variety of
places, including [Guirguis 2003] and [HKSAR 2008].

c. Applicability

These tools require network access to the software being evaluated.

d. Assessment

Pros:

 These tools are helpful in quickly finding well-known vulnerabilities.

 They only require network access; not even executables are required.

Cons:

 They can only find already-known vulnerabilities.

 Many tools produce false positives if they merely report on indicators instead of
actually trying to perform an exploit. For example, the tool may report that a
service is vulnerable if the program is misleadingly reporting the wrong program

http://en.wikipedia.org/wiki/Packet_analyzer
http://sectools.org/tag/sniffers/

 C-66

or version name, or if the program has been configured in a different way than
expected to counter the vulnerability.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed,

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Annual maintenance fees.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Tenable

Network

Security

Nessus http://www.tenable.com/products

/nessus

OpenVAS

project

OpenVAS http://www.openvas.org/

Rapid7 Nexpose http://www.rapid7.com/products/

nexpose/

Rapid7 Metasploit http://www.metasploit.com

33. Host-based Vulnerability Scanner

a. Overview

For the purpose of this paper, a host-based vulnerability scanner examines a host
system configuration for flaws and ensures that the host configuration meets certain
predefined criteria. It may also verify that the audit mechanisms work. This type of tool
can be used both before deployment and during operations.

 C-67

b. Details

A host-based vulnerability scanner is similar in some ways to a network
vulnerability scanner, but at least part of its functionality is on a host system. Thus, it has
much more access to information on the host system.

Host-based vulnerability scanners typically focus on identifying (and/or countering)
known problems. They “are able to recognize system-level vulnerabilities including
incorrect file permissions, registry permissions, and software configuration errors.
Furthermore, they ensure that target systems are compliant with the predefined company
security policies. Unlike network-based scanners, an administrator account or an agent is
[typically] required to be on the target system to allow for the system-level access
required.” [Guirguis 2003]

This type of tool can be used both before deployment and during operations.

Some tools are focused on specific types of programs being analyzed, e.g., database
analysis; these are discussed separately. In practice they may be coupled with other tools,
such as network-based vulnerability scanners.

More information is available in a variety of places, including [Guirguis 2003] and
[HKSAR 2008].

c. Applicability

At a minimum, these tools must have access to the host files (especially its
configuration files), and typically must be allowed to execute program(s) on the host.

d. Assessment

Pros:

 These tools are helpful in quickly finding well-known vulnerabilities.

Cons:

 They must have direct access to the host system being analyzed, or at least the
host system data.

 Many tools produce false positives if they merely report on indicators instead of
actually trying to perform an exploit. For example, the tool may report that a
service is vulnerable if the program is misleadingly reporting the wrong program
or version name, or if the program has been configured in a different way than
expected to counter the vulnerability.

 C-68

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Annual maintenance fees.

f. Examples of Suppliers/Products

Note that host-based scanning is often integrated in with other functionality, e.g.,
network-based scanning.

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Microsoft Microsoft

Baseline

Security

Analyzer

http://technet.microsoft.com/en-

US/security/cc184924.aspx

34. Host Application Interface Scanner

a. Overview

For the purpose of this paper, a host application interface scanner identifies the
various host-based interfaces of applications.

b. Details

A host application interface scanner at a minimum enumerates the various host-
based interfaces for applications. For example, on an Android platform, such programs
should identify the activities, broadcast receivers, content providers, and services. Such
interface scanners may also report other information about the applications (such as
privileges granted to them). Finally, such tools may also be able to create messages to
those interfaces (e.g., to perform penetration testing).

 C-69

c. Applicability

These tools may be especially useful in penetration testing. Expertise is required to
understand the outputs of these tools.

d. Assessment

Pros:

 Provide insight into applications.

Cons:

 Require significant expertise.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Annual maintenance fees.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

MWR Drozer https://www.mwrinfosecurity.com

/products/drozer/

35. Web Application Vulnerability Scanner

a. Overview

For purposes of this paper, a web application vulnerability scanner automatically
scans web applications for potential vulnerabilities. These tools simulate a web browser

 C-70

user, dynamically trawling through URLs and trying to attack the web application. For
example, they may perform checks for field manipulation and cookie poisoning
[SAMATE].

b. Details

For our purposes, a web application vulnerability scanner focuses on dynamic
analysis, simulating a web browser to look for vulnerabilities in a system. For static
analysis (analyzing the source code or executable), see the other tool/technology types.
Note that some analysis tools combine static and dynamic analysis techniques to find
vulnerabilities in web applications.

In some cases these scanners create attack input to see whether the web application
can counter the attack (often by using specialized fuzz testing techniques). For example,
to determine whether a web application is vulnerable to SQL injection, it may create and
send data specifically designed to try to trigger SQL injection attacks (such as inserting
single quotes with SQL commands that follow). As a result, such tools can find unknown
vulnerabilities in web applications. These tools will focus on known types of
vulnerabilities (a.k.a. “weaknesses”), not on radically new types of vulnerabilities, but
they can still be useful since most vulnerabilities are of common types.

NIST Special Publication 500-269 proposes “a minimum (mandatory) level of
functionality in order for the purchaser and vendor to qualify” for a “web application
security scanner specification,” their terminology of the time [Black 2008]. It includes a
list of web application vulnerabilities that such a tool should specifically look for, such as
SQL injection. Note that not all web application vulnerability scanners will necessarily
meet this level of functionality, and certainly not all scanners will meet that functionality
equally.

More information is available in a variety of places, including [Guirguis 2003] and
[HKSAR 2008], as well as the SAMATE page on web application vulnerability scanners
http://samate.nist.gov/index.php/Web_Application_Vulnerability_Scanners.html.\

Shay Chen has an extensive review of these kinds of tools [Chen 2014]. In his report
he recommends that “when trying to figure which tool you should use, try the following
simple methodology”:

1. Input Vector and Scan Barrier Support. “Figure out if the input delivery method
used by the application or applications you are using is supported by the scanners
you are evaluating. Do the same for the various security mechanisms,
technologies and scan barriers that are used in the application (Text X). The
scanner won't work at all, or will provide little value if it won't support those.”

2. Crawling & Input Vector Extraction. “If you use scanners mainly in a point-and-
shoot scenario, and prefer as much automation as possible, a [good automated

http://samate.nist.gov/index.php/Web_Application_Vulnerability_Scanners.html

 C-71

crawler] will be the second most important feature you should follow.” Chen
suggests using a high Web Input Vector Extractor Teaser (WIVET) score as a
way to measure this.

3. Vulnerability Detection Features and Accuracy. Prefer tools with good
vulnerability detection features and accuracy.

4. Price.

c. Applicability

These tools only apply to web applications, and they require dynamic (network)
access to the software being evaluated.

Some suppliers provide this capability only as an external service.

d. Assessment

Pros:

 These tools are helpful in quickly finding certain kinds vulnerabilities,
including vulnerabilities not known to the developers.

 They are relatively easy to get started if a test system is already available.

Cons:

 They must be able to execute the web application.

 Depending on how they are implemented, using these tools can corrupt the
underlying system’s data or interfere with its operation if applied against a
production system. Some tools are designed to minimize this risk, but that is
still a potential concern. This can be countered by applying the tools to a
test machine instead, but such a system must be made available, and test
systems often differ from production systems in important ways.

 It takes time to track back from a vulnerability discovery to determine what
the problem is and how to fix the problem (this is a difficulty with almost
any dynamic tool).

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

 C-72

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Annual maintenance fees.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier

Product

Name URL License

IBM IBM Security

AppScan

Standard

http://www-

03.ibm.com/software/products

/us/en/appscan-standard

Proprietary

Wapiti project Wapiti http://wapiti.sourceforge.net/ OSS

W3af project W3af http://w3af.org/ OSS

PortSwigger

Ltd

Burp Suite http://portswigger.net/burp/ Proprietary

White Hat

Security

SecurityChec

k

https://www.whitehatsec.com/ Proprietary

OWASP ZAP

project

Zed Attack

Proxy (ZAP)

https://www.owasp.org/index.p

hp/OWASP_Zed_Attack_Prox

y_Project

OSS

HP HP

WebInspect

http://www8.hp.com/us/en/soft

ware-solutions/webinspect-

dynamic-analysis-

dast/index.html?.Uqi69_RDs7

c

Proprietary

Netsparker

LTD

Netsparker https://www.netsparker.com/ Proprietary

Arachni Tasos Laskos http://www.arachni-

scanner.com/license/

OSS

Acunetix Acunetix WVS http://www.acunetix.com/vulne

rability-scanner/

Proprietary

NT

OBJECTives

APPSPider

(fka NTO

Spider)

http://www.rapid7.com/product

s/appspider/capabilities.jsp

Proprietary

Qualys QualysGuard

Web

Application

Scanning

(WAS)

https://www.qualys.com/enter

prises/qualysguard/web-

application-scanning/

Proprietary

http://sectoolmarket.com/web-application-scanners/57.html
mailto:tasos.laskos@arachni-scanner.com

 C-73

The web application security consortium (WASC) has a list of web application
security scanners at
http://projects.webappsec.org/w/page/13246988/Web%20Application%20Security%20Sc
anner%20List, and OWASP has a list of tools at
https://www.owasp.org/index.php/Phoenix/Tools. Also, [Chen 2012] [Chen 2014]
presents test results for a large number of web application vulnerability scanners.

36. Web Services Scanner

a. Overview

For the purpose of this paper, a web services scanner automatically scans a web
service (as opposed to a web application), e.g., for potential vulnerabilities. [SAMATE]

b. Details

A web services scanner focuses on dynamic analysis, simulating a client to look for
vulnerabilities in a system. For static analysis (analyzing the source code or executable),
see the other tool/technology types. Note that some analysis tools combine static and
dynamic analysis techniques to find vulnerabilities in web applications.

Fundamentally, a web services scanner is very similar to a web application
vulnerability scanner, but it is focused on web services instead of web applications.

More information is available in a variety of places, including [Guirguis 2003] and
[HKSAR 2008], as well as the SAMATE page on web services network scanners
http://samate.nist.gov/index.php/Web_Services_Network_Scanners.html.

c. Applicability

These tools only apply to web services and require dynamic (network) access to the
software being evaluated.

d. Assessment

Pros:

 These tools are helpful in quickly finding certain kinds vulnerabilities, including
vulnerabilities not known to the developers.

 They are relatively easy to get started if a test system is already available.

Cons:

 They must be able to execute the web service.

http://projects.webappsec.org/w/page/13246988/Web%20Application%20Security%20Scanner%20List
http://projects.webappsec.org/w/page/13246988/Web%20Application%20Security%20Scanner%20List
https://www.owasp.org/index.php/Phoenix/Tools
http://samate.nist.gov/index.php/Web_Services_Network_Scanners.html

 C-74

 Depending on how they are implemented, using them can corrupt the underlying
system’s data or interfere with its operation if applied against a production
system. Some tools are designed to minimize this risk, but that is still a
potential concern. This can be countered by applying the tool to a test machine
instead, but such a system must be made available, and test systems often differ
from production systems in important ways.

 Time is needed to track back from a vulnerability discovery to determine what
the problem is and how to fix the problem (this is a difficulty with almost any
dynamic tool).

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Annual maintenance fees.

f. Examples of Suppliers/Products

The following is an example of a supplier and their product. This example is
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

IBM IBM Security

AppScan

Standard

http://www-

03.ibm.com/software/products/us

/en/appscan-standard

37. Database Scanner

a. Overview

For the purpose of this document, a database scanner is “a specialized tool used
specifically to identify vulnerabilities in database applications” [SAMATE]. For

 C-75

example, they may detect unauthorized altered data (including modification of tables) and
excessive privileges.

b. Details

A database scanner does a detailed security analysis of database systems. This
includes authentication, authorization, and integrity of the database systems. It can also
identify potential security exposure in a database system, such as weak passwords,
security misconfigurations, and (in some cases) Trojan horses.

Many applications (including web applications) build on top of a database. Thus, a
tool that focuses on its database usage may identify problems, even if the database
scanner has no specific knowledge about that application. This means that database
scanners can detect previously unknown application vulnerabilities, but only if they relate
to how they use their database.

More information is available in a variety of places, including [Guirguis 2003] and
[HKSAR 2008], as well as the SAMATE page on database scanning tools (scanners) at
http://samate.nist.gov/index.php/Database_Scanning_Tools.html.

We categorize this as “dynamic” because these tools often run the database program
to gather the information they analyze. However, this is not always so, and the specific
data that they analyze is often static in nature. Some database scanners are host-based,
but this is not necessarily so.

c. Applicability

These tools only apply to databases, including applications that use databases.

d. Assessment

Pros:

 These tools are helpful in quickly finding certain kinds vulnerabilities, including
vulnerabilities not known to the developers.

 They are relatively easy to get started.

Cons:

 They only report on database issues, which is typically only a portion of an
application.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

http://samate.nist.gov/index.php/Database_Scanning_Tools.html

 C-76

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

− Training, including costs for training, and the time of those receiving the
training.

 Recurring resource requirements:

− Annual maintenance fees.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Imperva Scuba http://www.imperva.com/product

s/dsc_scuba-database-

vulnerability-scanner.html

Security

Wizardry

DBAPPSecurity

Database

vulnerability

scanner(DB-

Scan

http://www.securitywizardry.com/

index.php/products/scanning-

products/database-

scanners/database-vulnerability-

scanner.html

38. Fuzz Tester

a. Overview

A fuzz tester presents software systems with test cases that are invalid, unexpected,
or random, as a testing mechanism to determine whether problems occur (e.g., crashes,
failed operations, or memory leaks). Fuzz testing technology can be used as a standalone
function and is integrated into various other tools (e.g., scanners for creating denial of
service).

b. Details

Fuzz testing or fuzzing is an automated black box testing technique for software
that involves providing invalid, unexpected, or random data to the inputs of a computer
program. The software under test (SUT, which is also the TOE) is monitored for crashes,
failure of operations, and other problems (such as memory leaks, use of unallocated
memory [Serebryany 2012], or assertion failures). Tools that implement fuzz testing are
called fuzz testers or fuzzers.

 C-77

There are several different dimensions to consider when selecting a fuzzer. These
include how it generates the test cases, the target (aka attack vector) that it can test, and
what feedback it can use.

There are many different ways to generate test cases. Approaches include:

 Random. Here the software selects random values with no feedback from or
knowledge about the SUT. The fuzz test inputs can be truly random, or they
may be tailored to increase the likelihood of detecting certain kinds of defects.
For example, they may be tailored to include text fragments more likely to cause
a SQL injection, or may include context-specific inputs more likely to cause a
crash.

 Mutation. Mutation-based fuzzers mutate existing data samples to create test
data, e.g., by flipping bits or moving blocks around.

 Specification. Specification-based fuzzers (aka generational, model-based,
protocol-based, or “smart” fuzzers) are provided a specification (a model) of the
expected input and use this to generate input data by adding anomalies.
Creating these specifications takes more time but may provide more in-depth
results. These can be challenging to apply if the specification is unknown.

One research paper stated that, “The advantage to mutation-based fuzzing is that
little or no knowledge of the protocol or application under study is required... [while]
generation-based fuzzing requires a significant amount of up-front work to study the
specification and manually generate test cases. Regardless, intuition says that the extra
knowledge gained by understanding the format should result in higher quality test cases.”
They then performed an experiment that confirmed this; they measured the amount of
executed code required to parse PNG image files, and in their case found that
“generation-based fuzzing can execute 76% more code when compared to mutation-
based methods.” [Miller2007]

Any of these generation approaches can also support evolution; that is, accepting
feedback from the SUT to make better decisions about future test cases. In some cases,
routines such as checksum checkers may need to be disabled or specially handled when
generating test cases (particularly if the fuzzer is not a specification-based fuzzer).

Fuzzers also vary in the kinds of targets they support. They may be designed to test
only applications that use specific frameworks, environments, or protocols. In some
cases specialized fuzzers are created for a specific program. Therefore, it is important to
check whether the fuzz tester being considered for use would be appropriate for the
software it would be testing. Different fuzzers support fuzzing of file contents, file
systems, environment variables, APIs, and/or network protocols at various levels. These
may be divided in two classes:

 C-78

a. Interactive Fuzz testers. Interactive fuzzers support applications that require
interaction via some kind of protocol, such as a network protocol (e.g., FTP)
or web application (e.g., HTTP).

b. Non-interactive Fuzz testers. Non-interactive fuzzers support applications
that do not require interactive protocols, such as file formats or
environmental variables.

Fuzzers also differ in the information they can use from execution. Nearly all
fuzzers at least note when a program crashes, interpreting that as a potential problem.
Some fuzzers (particularly if they are specification-based) can examine responses to
determine whether those results are sensible (a fuzzer will be able to identify when a
response is outside a permitted range). Heartbleed, for example, was found by
Codenomicon using this technique [Wheeler2015]. In addition, other tools may be used
to help detect problems, e.g., an address sanitizer may be used to detect when a program
accesses memory it should not be accessing [Serebryan2012] [Böck]. Since earlier
SOAR reports, there has been an improvement in the information fuzzers often use to
detect problems, leading to improvements in fuzzing results (e.g., read/write outside of
buffers, including buffer overflows, is more likely to be detected when these improved
sources of information are used).

Some fuzzers leverage code coverage to indicate which areas need further
examination; see “coverage-guided fuzz tester” (section C.55).

There are many other ways to categorize fuzzers; this is an active area of research
and development.

Fuzzers can work well in identifying problems that might cause a program to crash,
such as buffer overflow, denial of service attacks, format bugs, input validation errors,
and SQL injection, which are often used by malicious attackers to cause the largest
impact using the fewest possible resources. Fuzz testing is often less effective for dealing
with security threats that do not cause program crashes, such as spyware, some viruses,
worms, Trojans, and key loggers.

Fuzz testing can often reveal defects that are overlooked when software is written
and debugged. However, fuzz testing usually finds only the most serious faults. It
cannot be used to provide a complete picture of the overall security, quality, or
effectiveness of a program in a particular situation or application. Also, fuzz testing is
often subject to diminishing returns; once initial problems are fixed, fuzz testing can be
progressively less effective at finding more. Fuzzers are most effective when used in
conjunction with extensive black box testing, beta testing, and other methods.

Fuzz testing is a very general technique. Therefore, fuzz testing approaches may
sometimes be included as part of other tool types. For example, web application

 C-79

vulnerability scanners typically incorporate fuzz testing; for more information, see
section C.34 above.

Books that provide more detail about fuzzing include [Sutton2007] and
[Takanen2008].

c. Applicability

Fuzz testing is a widely applicable testing technique for software, because it is
simple and may offer a high benefit-to-cost ratio.

d. Assessment

Pros:

 Fast ramp-up for use,

 Fast method of identifying some critical issues in software systems,

 Extremely cost effective approach.

Cons:

 Not a comprehensive testing approach,

 Only certain types of security flaws would typically be discovered by fuzz
testing,

 Typically has diminishing returns.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Small investment for licensing (fuzz testers are often inexpensive compared
to other analysis tools).

 Recurring resource requirements:

− Annual maintenance fees are often minimal to none.

f. Examples of Suppliers/Products

Many programs implement fuzz testing. In addition, some interviewees stated that
they found it just as effective to write specialized fuzzing programs, since they are fairly
easy to write and specialized fuzzers can target properties of specific applications and
platforms.

 C-80

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name

Language or

Application Type URL

Beyond

Security

beSTORM Binary, in-memory http://www.beyondsecurity.com/b

estorm.html

Synopsys

Codenomicon

Defensics Windows, Linux http://www.codenomicon.com/pr

oducts/defensics/

Microsoft

Research

Sage .NET platform http://research.microsoft.com/en-

us/um/people/pg/public_psfiles/c

acm2012.pdf

Peach Fuzzer Peach Fuzzer

Platform

.NET, Python http://www.peachfuzzer.com/

Caca labs zzuf POSIX (including Linux) http://caca.zoy.org/wiki/zzuf

CERT CERT fuzzers:

Basic Fuzzing

Framework

(BFF) and the

CERT Failure

Observation

Engine (FOE).

BFF is for Linux and Mac

OS; FOE is for Windows

https://github.com/CERTCC-

Vulnerability-Analysis/certfuzz

39. Framework-based Fuzzer

a. Overview

For our purposes, a framework-based fuzzer creates inputs and observes results, as
with traditional fuzzing, but it instruments the underlying platform framework to help
identify and select what inputs would be most relevant to test.14

b. Details

One challenge of using traditional fuzzing is that it does not have information on the
internals of a program. As a result, it often fails to test significant portions of a program,
resulting in a “shallow” test.

However, many applications are built using a common framework, which typically
includes various “registration” facilities to identify what is important to the application.
For example, in mobile applications, “A distinctive aspect of mobile apps is that all such

14 Note that the term “framework-based fuzzers” has multiple different meanings in the literature.

 C-81

apps, regardless of how diverse their functionality, are written against a common
framework that implements a significant portion of the app’s functionality” [Machiry].
The same can be said for many web applications (though for web applications there is a
large set of frameworks, not a single one).

An application can use platform framework information to focus its test generation,
and also use the framework to extract information on the success of the test. This
additional information can help improve the depth of testing, and in particular, may help
improve security-relevant testing. For example, a framework-based fuzzer may build in
knowledge of what sequences or states must not occur and what input patterns are more
likely to cause security breaches.

c. Applicability

An application framework is necessary for this approach. The more widespread the
framework, the more useful a particular testing tool to use the framework can be. Mobile
applications are typically built as extensions of a preset framework provided by the
mobile operating system, making it easier to build one tool that can apply to many
different applications.

d. Resource Requirements

Pros:

 Typically does not require source code of applications.

Cons:

 Based on recent research, so they are less mature, and their limitations are less
understood

 Only certain types of security flaws would typically be discovered by fuzz
testing.

e. Resource Requirements

Resource requirements are uncertain at this time, and probably vary depending on
the framework and context applied.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

 C-82

Supplier Product Name Frameworks Supported URL

Georgia

Institute of

Technology

Dynodroid Android http://pag.gatech.edu/dynodroid/

40. Negative Testing

a. Overview

For the purpose of this document, negative testing is the technique of including in
the regression test suite many tests that should fail if the security mechanisms work
properly. This technique is typically implemented as a test case generation criteria when
using existing test tools.

b. Details

Many developers are understandably focused on ensuring that a system works
correctly when given correct inputs. This can lead to an unfortunate blindness;
developers may fail to ensure that a system works when given incorrect or malicious
inputs, including inputs that should fail because of security and input validation
mechanisms.

If a software system is properly developed there will be an automated regression test
suite that can re-test the software to check whether it is working correctly. Such
automated regression tests should be run often (e.g., every build or every week).
Negative testing simply requires an automated regression test suite that includes tests of
the security mechanisms. This includes testing the input validation mechanisms and
preventing accesses and requests that should be prevented. Vulnerabilities previously
fixed should trigger the creation of new tests in the automated regression test suite, to
prevent later changes from re-introducing the vulnerability.

c. Applicability

Any software development organization can perform negative testing. In particular,
they should already be maintaining and using a regression test suite, so this is primarily a
matter of training and funding testers to include negative tests in the test suite. The
recurring costs in many cases would be absorbed into the costs of developing the
regression test suite.

This approach could in theory be performed by those outside the software
development organization, e.g., by potential users. A regression test suite framework for
the component would need to be established and maintained; doing this outside the
development organization would be more difficult.

 C-83

d. Assessment

Pros:

 Negative testing can be easily integrated into the existing regression test suite.

Cons:

 It requires training; many developers and testers do not have experience creating
these kinds of tests.

 It requires effort to create the initial tests.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Training to create these kinds of tests,

− Cost of creating initial tests.

f. Examples of Suppliers/Products

Since this is a process that reuses existing tools, a list of suppliers/products is not
appropriate.

41. Digital Forensics

a. Overview

For the purpose of this paper, digital forensics tools are tools that support “the use of
scientifically derived and proven methods toward the preservation, collection, validation,
identification, analysis, interpretation, documentation and presentation of digital evidence
derived from digital sources for the purpose of facilitating or furthering the reconstruction
of events found to be criminal, or helping to anticipate unauthorized actions shown to be
disruptive to planned operations,” per the Digital Forensics Research Workshop [Carrier
2003] [Palmer 2001].

b. Details

Applications can be executed and the resulting stored data can then be analyzed to
learn important facts about the application. For example, preset sensitive data (including
credentials) can be entered into an application, and then forensics tools can capture the
stored data to see if it was properly encrypted or otherwise protected.

 C-84

The NIST Computer Forensics Tools Testing (CFTT) program provides a measure
of assurance that the tools used in the investigations of computer-related crimes produce
valid results [NIST CFTT].

c. Applicability

Forensics tools can reveal failures to perform credential encryption and some
exposures of sensitive information.

d. Assessment

Pros:

 Can quickly obtain stored data/evidence for examination.

Cons:

 Its Utility in evaluating applications is limited.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Training to create these kinds of tests,

− Cost of creating initial tests.

f. Examples of Suppliers/Products

Since this is a process that reuses existing tools, a list of suppliers/products is not
appropriate.

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name Frameworks supported URL

viaForensics viaLab (portion) Android https://viaforensics.com/products

/vialab/

 C-85

42. Intrusion Detection Systems/Intrusion Prevention Systems

a. Overview

An Intrusion Detection System (IDS) monitors network or system activities for
malicious activities or policy violations and reports them. An Intrusion Prevention
System (IPS) also monitors, but instead of just reporting activities or violations, it
actively prevents or remediates them. There are two major types of IDS/IPS:

 Network-based IDS/IPS. A network-based IDS or IPS monitors network traffic
to perform its monitoring, prevention, and/or remediation for malicious
activities or policy violations.

 Host-based IDS/IPS/Integrity checker. A host-based IDS, IPS, or integrity
checker monitors data other than network traffic (such as files, registry values,
and program input/output) for malicious activities or policy violations.

b. Details

Intrusion detection and intrusion prevention systems monitor network traffic and or
system events for malicious activities. IDSs tend to be passive; they may be placed in
parallel or in line, monitoring events and traffic and alerting about suspicious events,
changes or anomalies. IPSs are often placed in line and actively prevent or block
intrusions, including shutting off ports or blocking traffic.

IDS/IPS systems (both network and host-based) can be divided into signature-based
and statistically-based approaches:

 Signature-based detection uses attack patterns or expected usage patterns that
are preconfigured and predetermined. As traffic traverses the network, an
IPS/IDS analyses the traffic for a signature match (or non-match) and delivers
an alert to the appropriate system or person and in many cases, takes
preventative action as well.

 Statistical anomaly-based detection initially takes a baseline or average of
network traffic conditions. It then samples the network traffic to compare
current traffic against this baseline to verify that activities are within expected
parameters.

For more information see [Holland 2004].

c. Applicability

IDS/IPS systems are useful in the operational environment because they can detect
or prevent potential intrusions/breaches. This enables countering intrusions/breaches
directly, as well as possibly suggesting future changes to the system to make future

 C-86

attacks even more difficult to perform. Similarly, IDS/IPSs are useful in the development
and sustainment environment, because they can sometimes detect or prevent potential
intrusions/breaches aimed at subverting the software in development or sustainment.

For software systems assurance, IDS/IPSs can be used to evaluate software by
running the software under its monitoring. This may occur during more extensive
processes such as monitored execution and penetration testing. The IDS/IPS data may
then be used to help determine level of risk. For example, if the IDS/IPS reports a
number of suspicious activities, those can be investigated or simply used as evidence to
prefer a different product.

d. Assessment

Pros:

 The technology is already widely adopted and used.

 It enables data collection.

Cons:

 It can only detect problems if it can observe the problematic state or behavior
and also have signatures or statistics that suggest that they are problems.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

 Recurring resource requirements:

− Annual maintenance fees,

− Usage effort. This includes setting up the configuration, running the tool,
and reviewing the results to determine what vulnerabilities are applicable
and their priority.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

 C-87

Supplier Product Name Languages Supported URL

Cisco Intrusion

Prevention

System (IPS)

Network, host based

intrusion prevention

solutions – integrated into

FW or separate

http://www.cisco.com/en/US/prod

ucts/ps5729/Products_Sub_Cate

gory_Home.html

Cisco

(formerly

Sourcefire)

SNORT free and open source

network intrusion

prevention system

http://en.wikipedia.org/wiki/Snort

_%28software%29

Open

Information

Security

Foundation

(OISF)

Suricata Free open source

Network IDS, IPS and

Network Security

Monitoring engine

http://suricata-ids.org/

43. Automated Detonation Chamber (limited time)

a. Overview

An automated detonation chamber (limited time) automatically isolates a program
and/or data (including running multiple copies in virtual machines), executes/processes it,
detects potentially malicious or unintentionally vulnerable activities, and then reports its
findings (typically prior to the software’s deployment).

b. Details

A detonation chamber is a system that runs a program or processes data in isolation
so that its behavior during execution can be monitored. This monitored execution can
vary from a quick run-through using a single tool to a fairly extensive analysis using
multiple tools/techniques to detect intentional and unintentional malicious/unplanned
behavior. Using a detonation chamber for monitored execution is general approach that
can combine many different approaches, as discussed in the main body of this paper.

This type of tool typically focuses on executing the software under test for a limited
time to monitor execution to detect malicious behavior. These tools often execute
programs in virtual environments to make it easier to observe results such as registry
changes, file changes, creation of intents, etc. This technique can be performed using
many parallel executions for any one application, observing for potentially unwanted
behavior across many possible input spaces. Often the limited time is fixed, but in some
cases the time may be extended (e.g., if more suspicious or risky behavior is observed).
This technique can also be performed for multiple applications simultaneously.

Many formats typically considered data (such as portable document format (PDF)
and the office file formats) can include executable code or data that could exploit the

http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/Intrusion-prevention_system
http://en.wikipedia.org/wiki/Intrusion-prevention_system
http://idsips.wordpress.com/about/oisf/

 C-88

processing program. Thus, this approach can be applied to formats typically considered
as data.

Note that this is different from the approaches used by a virus scanner, intrusion
detection system (IDS) or an intrusion prevention system (IPS). In an automated
detonation chamber the potentially malicious software is not run in the final environment.
Since it is not running in the final environment, if the software is malicious, it cannot
cause the kind of damage as it would if it were installed in its final location.

Previous versions of this document referred to this approach as “automated
monitored execution (limited time).” However, the term “automated detonation
chamber” seems to be more commonly used and is clearer. In particular, it is possible to
monitor applications as they run in the real environment, which is different from the
approach described here.

c. Applicability

This can potentially apply to any application. This approach can be used today as
an inline analysis technique in network infrastructure, e.g., it can be used to monitor
email attachments for malicious behavior prior to allowing the attachments to reach their
destination.

This approach is often used in operational settings. In these cases, if malicious
indicators are detected, that information is often sent out to other operational systems
(including the supplier’s or other customers). This automated sharing can help prevent
others from running the malicious code or data.

Note that one potential use for an automated detonation chamber can be to
determine excessive power consumption (e.g., for mobile devices). Excessive power
consumption can directly indicate attacks focusing on draining mobile device power (as a
denial of service attack). Excessive power consumption, or excessive CPU utilization,
may also be an indicator of some kinds of intentional malware that is stealing processing
cycles (e.g., to mine virtual currencies like Bitcoin).

d. Assessment

Pros:

 Fast ramp-up for use,

 Fast method of detecting some malicious behavior before the application is used.

 C-89

Cons:

 Not a comprehensive testing approach. In particular, applications that delay
malicious activities may not be detected

 Dependent on tool vendor algorithms for learning and administering heuristics.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Investment for licensing.

 Recurring resource requirements:

− Annual maintenance fees are often minimal to none.

− Training for tool usage.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name

Language or

Application Type URL

FireEye Virtual

execution

engine

Selected document

formats on Windows

http://www.fireeye.com/products-

and-solutions/virtual-execution-

engine.html

Palo Alto Wildfire Selected document

formats and websites on

Windows and Android

https://www.paloaltonetworks.co

m/products/secure-the-

network/subscriptions/wildfire

and

https://www.paloaltonetworks.co

m/resources/datasheets/wildfire

Cuckoo

Foundation

Cuckoo

Sandbox

Files and websites on

Windows, OS X, Linux,

and Android

https://www.cuckoosandbox.org/

Appthority App risk

management

service

Android, iOS https://www.appthority.com/prod

ucts/service-works

Veracode Veracode App

Intelligence

(vAI) (partial)

Android, iOS https://www.veracode.com/produ

cts/application-security-

analytics.html

 C-90

Supplier Product Name

Language or

Application Type URL

DroidBox

project

DroidBox Android http://code.google.com/p/droidbo

x/

Kryptowire Kryptowire Android, iOS http://www.kryptowire.com/

44. Forced Path Execution

a. Overview

Forced path execution runs a program and forces execution of all (control flow)
paths, even if the test inputs would not normally cause it to do so, and monitors what
happens to detect possible undesired behavior.

b. Details

Most dynamic execution approaches only test a portion of the program, namely, the
parts exercised based on the inputs given. In this approach, the other paths are forced to
be executed anyway, to see what happens to the data on those branches. For example, in
a mobile environment, it could examine to see whether sensitive data (such as contact
information, microphone sensor data, or camera data) is stored in or transmitted to
unexpected destinations, or if some data is not encrypted in some cases.

This approach does raise a potential risk of false positives, but it also increases
program coverage within reasonable scale. This approach can be easily scaled by
applying multi-core systems to execute the various control paths simultaneously,
reducing the time for analysis to complete.

c. Applicability

This may be especially helpful for identifying some kinds of exfiltration or other
exposures of sensitive data.

d. Assessment

Pros:

 Fast method of detecting some malicious behavior before the application is used,

 More code coverage than typical for a dynamic analysis tool/technique.

Cons:

 Potential for significant false positives.

 C-91

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Investment for licensing.

 Recurring resource requirements:

− Annual maintenance fees are often minimal to none.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name

Language or

Application Type URL

Kryptowire Kryptowire

(Android

edition)15

Android bytecode http://www.kryptowire.com/

45. Firewall

a. Overview

A firewall limits network access based on a set of rules. A firewall can be network-
based (e.g., used as a gateway into a network) or host-based (limiting access between one
host and a network). They typically check traffic against signatures and anomalies.

For our purposes there are at least two kinds of firewall:

 Network firewall. This limits access at the network level.

 Web application firewall. A web application firewall examines network traffic at
the web application level to detect and/or limit damage. Its deeper inspection
than typical network firewalls or IPSs can protect web applications/servers from
web-based attacks that IPSs cannot prevent.

15 Kryptowire also supports iOS, and it also includes some static analysis to provide context for the

dynamic analysis. For our purposes, we are highlighting the forced path execution technique Kryptowire
uses on Android applications with bytecode, as this provides a different analysis technique than is used
by many other tools.

 C-92

b. Details

A firewall controls, monitors and analyzes incoming and outgoing traffic. Data
packets are analyzed to determine whether they should be allowed in or not.
Additionally, most firewalls today provide intrusion detection for both network and
application layers. Application layer firewalls also typically provide virtual patching
techniques along with a broader set of protocol analysis.

Network layer firewalls filter at the network packet level. They generally operate at
a low level of the network protocol stack (TCP/IP, IP, UDP, etc.), controlling access to
the network they are protecting by either allowing or not allowing packets to pass
through. The controls used are based on a set of firewall rules that are defined/configured
by the organization’s security administration. Network firewalls may be either stateful or
stateless. A stateful firewall maintains the context of the various active sessions and uses
the state information to speed packet processing. Stateless firewalls have a generally
higher throughput because they are not keeping state, but they have less information that
they can use for decisions.

Application firewalls are differentiated from standard network firewalls because
they can analyze higher-level protocols and data (e.g., File Transmission Protocol (FTP),
Domain Name System (DNS), and HyperText Transfer Protocol (HTTP)). They may use
deep packet inspection and integration with IDS/IPS. They may integrate with user
authentication and authorization services to limit who has access to higher-level services.
They may also provide virtual patching capabilities. Virtual patching is the quick
development and short-term implementation of patch/configuration change to prevent an
exploit from occurring if an intrusion or vulnerability is discovered. It is considered a
temporary fix until proper mitigations are deployed.

For more information, see [McDowell 2009] and [Northrup 2013].

c. Applicability

As with IDS/IPS, firewalls are useful in the operational environment because they
can prevent some potential intrusions/breaches. This enables countering intrusions/
breaches directly, as well as possibly suggesting future changes to the system to make
future attacks even more difficult to perform. Similarly, firewalls are useful in the
development and sustainment environment, because they can sometimes prevent potential
intrusions/breaches aimed at subverting the software in development or sustainment.

For software systems assurance, firewalls can be used to evaluate software by
isolating the software being monitored. This may occur during more extensive processes
such as monitored execution and penetration testing.

 C-93

d. Assessment

Pros:

 The technology has already been widely adopted and used.

 It can provide simple access control limitations.

Cons:

 It can only provide partial isolation while still allowing data through.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

 Recurring resource requirements:

− Annual maintenance fees,

− Usage effort. This includes setting up the configuration, running the tool.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name Firewall Type URL

Juniper Juniper Firewall

Product line

Network firewall http://www.juniper.net/techpubs/s

oftware/ive/esap/releasenotes/Li

st_of_Products_Supported_By_

ESAP_1.5.2.pdf

Cisco Cisco ACE Web

Application Firewall

Application

firewall

http://www.cisco.com/en/US/prod

ucts/ps9586/index.html

Sophos Sophos UTM (formerly

Astaro Security

Gateway)

Client firewall http://www.sophos.com/en-

us/products/unified.aspx

Sonicwall Dell™ SonicWALL™

Next-Generation

Firewalls

Gateway Firewall https://www.sonicwall.com/us/en/

products/Next-

Generation_Firewall.html

http://www.sophos.com/en-us/products/unified/utm.aspx
http://www.sophos.com/en-us/products/unified/utm.aspx
http://www.sophos.com/en-us/products/unified/utm.aspx

 C-94

46. Man-in-the-Middle Attack Tool

a. Overview

A man-in-the-middle attack tool attempts to intercept and perform a man-in-the-
middle attack on the application. This can be at the network level or in lower-level
application communication protocols.

b. Details

A man-in-the-middle attack can be conducted by an attacker who intercepts and
establishes a connection between two victims while presenting himself as the two victims
in their private connection. Attackers are likely to intercept messages going between the
two victims and inject new ones. An attacker has to impersonate each endpoint in such a
way that the victim is not able to differentiate between the attacker and the intended
connection. Various countermeasures can be put in place for man-in-the-middle attacks,
including strong encryption (communication encrypted to protect packets traversing
network), public key infrastructures (mutual authentication), strong mutual authentication
(secret keys, passwords), latency examination, and others, but these countermeasures can
fail.

Attempting to perform a man-in-the-middle attack can help determine whether the
countermeasures (if any) are adequate. These attacks can occur at many locations and
protocols, including wireless or LAN based attacks, SSL/TLS, Secure Shell (SSH), and
Android intents. Attempting to perform an attack is different than merely observing
behavior (as with network sniffers); in particular, it may be possible to get systems to
accept poorly-authenticated data using protocols or configurations they would not
normally use (e.g., downgrading to a poor encryption algorithm).

c. Applicability

This tool/techniques applies wherever a man-in-middle attack could occur.

d. Assessment

Pros:

 Method of identifying man-in-the-middle characteristics or performing such
attacks to test protection measures.

Cons:

 Often requires a technically adept analyst.

 C-95

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Small investment for licensing (many tools are open source),

− Minimal uptime for implementing attack or detection mechanisms.

 Recurring resource requirements:

− Annual maintenance fees are often minimal to none because of the number
of open source tools available.

f. Examples of Suppliers/Products

Many tools incorporate man-in-the-middle attacks as part of a larger set of attacks.

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name

Language or

Application Type URL

Rapid7 Metasploit Not applicable http://www.metasploit.com/

KARMA Theta44 various http://www.theta44.org/karma/

Ettercap Ether cap Linux http://ettercap.github.io/ettercap/

OXID.IT Cain and Able Windows environment http://www.oxid.it/cain.html

Telerik Fiddler Windows environment http://www.telerik.com/fiddler

Intrepidus

Group

Mallory

(TCP/UDP

proxy)

Mobile environment –

802.11 http/https MIK

attack tool

https://intrepidusgroup.com/insig

ht/mallory/

Monkey.org DSNIFF (esp.

sshmitm and

webmitm)

Not applicable http://monkey.org/~dugsong/dsni

ff/

Thoughtcrime SSLStrip/SSLS

niff

various http://www.thoughtcrime.org/soft

ware/sslstrip/

47. Debugger

a. Overview

A debugger is a tool that enables observation and control of a program under
execution. This can include the ability to execute the program step by step, and to
observe internal states and results.

http://en.wikipedia.org/wiki/Fiddler_%28software%29

 C-96

b. Details

Debuggers allow programs to run under the monitoring and control of a human
(directly, or via plug-ins to the debugger). Debuggers normally include (directly or
indirectly) a disassembler and other tools to enable a human to determine the current state
of a program.

Debuggers can provide some insight into how programs really work, and can detect
certain signs of malicious behavior or unintentional vulnerabilities. However, the large
effort and strong expertise required limits in practice what this approach can and cannot
do with large, modern software. These tools present material at a very low level
(especially if monitoring machine code). Additionally, debuggers can only present what
happens with a particular set of inputs at particular points in time, not for all inputs.
Thus, debugging use tends to be focused on spot checks or on very specific issues (e.g.,
for root cause analysis), instead of being used as a general-purpose tool to find arbitrary
problems.

Malicious programs may include “anti-debugging” code that attempts to detect that
it is running under the control of a debugger, and then change to benign behavior to
evade detection. Debuggers can attempt to counter this, but this leads to an arms race
between malicious code developers and debugger developers.

c. Applicability

These tools require binary or bytecode. Source code improves their usability, but it
can still be overwhelming to follow non-trivial programs using them.

For software systems assurance, debuggers can be used to help evaluate software by
running the software under its monitoring. This may occur during more extensive
processes such as monitored execution and penetration testing. The debugger may use
plug-ins to help monitor suspicious or unusual behavior, and then enabled detailed review
and analysis when suspicious events occur.

d. Assessment

Pros:

 Debuggers can apply in cases where only the binary or bytecode is available.

Cons:

 Human analysis tends to be very costly and difficult to scale.

 Debugging only reports about a particular input set; different input sets would
typically produce different results.

 C-97

 Training is necessary. Users must have deep and extensive knowledge of the
lower-level constructs that are being analyzed.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees,

− Training, including costs for training, and the time of those receiving the
training. This includes in-depth knowledge of the underlying binary or
bytecode format.

 Recurring resource requirements:

− Annual maintenance fees,

− Usage effort. This can be substantial.

f. Examples of Suppliers/Products

Note that IDA Pro is not related to the Institute for Defense Analyses (IDA). Also,
IDA Pro is both a disassembler (static) and a debugger (dynamic).

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Hex-Rays IDA Pro https://www.hex-

rays.com/index.shtml

48. Fault Injection

a. Overview

Fault injection techniques insert faults into software to enable better testing. There
are two main types:

 “Source code fault injection tools provide [mechanisms] through which source
code can be instrumented to induce the code to follow control paths that would
be otherwise difficult to test for.”

 “Binary fault injection tools provide mechanisms through which safety- or
security-related faults can be sent to the application while it is running….Unlike

 C-98

source code fault injection, binary fault injection does not require knowledge of
the application’s source [code].” [BAH 2009]

b. Details

The term “fault injection” is used with a variety of meanings in industry. Some
sources appear to include any tool that sends input or other signals so that the tool can
detect problems. For the purpose of this document, we use a narrower definition,
focusing on tools designed to trigger error-handling code by intentionally creating errors.
All tools/techniques in the dynamic or hybrid analysis category send data to detect
problems, including the various application-specific vulnerability scanners (such as web
application scanners), fuzz testing, and negative testing.

For our purposes, fault injection techniques intentionally insert faults. A key
difference is whether this is done at the source code level or at the binary/bytecode
(external) level.

Source code fault injection requires “a deep understanding of the software being
tested. In return, testers achieve greater code coverage and a lower false positive rate than
other testing methods. However, like static analysis tools, these tools require that the
source code to the application be available.” [BAH 2009]

Binary fault injection does not require knowledge of the application’s source code,
and “can successfully be performed with little specific training. However, additional
analysis may be required to determine the best course of action for mitigating any defects
identified by these tools.” [BAH 2009]

Since fault injection simulates faults, it can be a useful technique for testing
fault/error handling. However, it is less effective at detecting other vulnerability sources.

c. Applicability

Source code is required for source code fault injection; binary/bytecode is required
for binary fault injection.

d. Assessment

Pros:

 Fault injection is helpful in finding problems in fault/error handling that might
otherwise be missed.

 Binary fault injection is relatively easy to apply for use in detecting problems.

 C-99

Cons:

 Source code fault injection requires strong knowledge of the application.

 It is primarily a way to detect problems in fault/error-handling, and not for many
other problems.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

− Training.

 Recurring resource requirements:

− Annual maintenance fees.

f. Examples of Suppliers/Products

Note that many “fault injection” tools also perform other types of dynamic analysis
(e.g., fuzzing), which are covered separately.

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Critical Software csXCEPTION http://asd.criticalsoftware.com/cs

xception/

–A. Bertogli (open

source)

libfiu http://blitiri.com.ar/p/libfiu/

49. Logging Systems

a. Overview

Logging systems records events, and their times, to provide an audit trail that can be
used to understand software activity and diagnose problems. The “syslog” service is an
example. This information may be sent to a Security Information and Event Management
(SIEM) system.

 C-100

b. Details

Logging systems record events to provide an audit trail. They are used to
understand the activity of software systems and to diagnose problems. Logs are essential
to understanding the activities of complex systems. They can be used to combine log file
entries from multiple sources. This approach, combined with various sophisticated
analyses can result in the correlation and assessment of both related and unrelated events
for anomalies.

Although an enterprise may be populated with a number of logging systems, they
are usually a mechanism within various enterprise/system solutions such as operating
systems, firewalls, intrusion detection systems, etc. Additionally, each vendor solution
has logging mechanisms that are specific to their functionality and can monitor and track
any number of things, including access, network traffic, change in file/filesystem,
intrusions, and denial of service.

c. Applicability

Logging systems are a standard method of tracking events in both systems and a
network. Common event mechanisms include syslog, which is found in an operating
system and can track accesses to a system by tracking login mechanism or file system
activities, including successful and unsuccessful attempts and unauthorized access
attempts.

For software systems assurance, logging systems can be used to help evaluate
software by maximizing what is logged, and then running the software while logging
issues. This may occur during more extensive processes such as monitored execution and
penetration testing. The logging system results may then be analyzed to gain insight into
the software’s behavior.

d. Assessment

Pros:

 These tools are helpful in quickly finding tracking events/activities.

 They are low cost or integrated into existing infrastructure components.

Cons:

 There may be low-level data collection requiring synthesis and correlation for
more thorough analysis.

e. Resource Requirements

Resource requirements include:

 C-101

 Integrating the software into the logging system, including appropriate
selection of what to log.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Rsyslog project /

Adiscon GmbH

rsyslog http://www.rsyslog.com/

50. Security Information and Event Management

a. Overview

Security Information and Event Management (SIEM). “SIEM technology provides
real-time analysis of security alerts generated by network hardware and applications.”
[Dr. Dobbs 2007]

b. Details

A SIEM delivers real-time analysis of security alerts from various network devices
and software. SIEMs may be used as a way to log and analyze data (including network
data and security alerts), and generate reports for analysis and compliance.

c. Applicability

SIEMs are widely applicable, integrated, and used in the operational enterprise to
track the activities in the network that may provide insight into the network operations for
verification of expected behavior/events as well as anomalous behavior.

For software systems assurance, SIEMs can be used to help evaluate software by
maximizing what is logged, enabling other monitoring systems, and then running the
software while the SIEM gathers relevant data. This may occur during more extensive
processes such as monitored execution and penetration testing. The results may then be
analyzed to gain insight into the software’s behavior.

d. Assessment

Pros:

 SIEM functionality is fairly commoditized in the market.

 C-102

Cons:

 Selecting a SIEM can be challenging, given the large number of available
options and variation in their capabilities.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Licensing fees. Licensing schemes vary; some per node, others by lines of
code analyzed.

 Recurring resource requirements:

− Annual maintenance fees.

− Usage effort. This includes setting up the configuration, running the tool,
and reviewing the results to determine what vulnerabilities are applicable
and their priority.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

EMC RSA Security

Information & Event

Manager

http://www.emc.com/security/rsa-security-
information-event-management.htm

Enterasys Enterasys Security

Information & Event

Manager

http://www.enterasys.com/products/advanced-
security-apps/security-information-management/

HP

Enterprises

ArcSight http://www8.hp.com/us/en/software-
solutions/siem-arcsight/

Intel Security McAfee Enterprise

Security Manager
http://www.mcafee.com/us/products/siem/index.as
px

Splunk Splunk http://www.splunk.com/view/enterprise-security-
app/SP-CAAAE8Z

Tripwire Security Information &

Event Manager
http://www.tripwire.com/it-security-software/log-
event-management/security-information-event-
management-siem/

http://www.emc.com/security/rsa-security-information-event-management.htm
http://www.emc.com/security/rsa-security-information-event-management.htm
http://www.enterasys.com/products/advanced-security-apps/security-information-management/
http://www.enterasys.com/products/advanced-security-apps/security-information-management/
http://www8.hp.com/us/en/software-solutions/siem-arcsight/
http://www8.hp.com/us/en/software-solutions/siem-arcsight/
http://www.tripwire.com/it-security-software/log-event-management/security-information-event-management-siem/
http://www.tripwire.com/it-security-software/log-event-management/security-information-event-management-siem/
http://www.tripwire.com/it-security-software/log-event-management/security-information-event-management-siem/

 C-103

51. Test Coverage Analyzers

a. Overview

Test coverage analyzers are tools that measure the degree to which a program has
been tested (e.g., by a regression test suite). Common measures of test coverage include
statement coverage (the percentage of program statements executed by at least one test)
and branch coverage (the percentage program branch alternatives executed by at least one
test). Areas that have not been tested can then be examined, e.g., to determine whether
more tests should be created or whether that code is unwanted.

b. Details

Software can be run through a large series of tests, but even a large set of tests may
completely fail to test significant portions of the software.

A “test coverage criterion” defines a criterion for measuring completeness of a test.
As noted above, common measures are statement coverage (the percentage of software
statements executed by at least one test in the test suite) and branch coverage (the
percentage of branch alternatives executed by at least one test in the test suite).
Achieving 100% coverage can be expensive for some software, but it may be possible to
examine those parts not covered to determine why they were not covered by a test, and in
particular, determine whether or not these untested regions are a problem.

This approach can, in particular, identify some Trojan horses. If the software
includes malicious logic that is not triggered by any test, then the Trojan horse will be
among the untested portions that can be examined later. Note, however, that malicious
developers can take measures to evade detection (e.g., by implementing built-in
interpreters and hiding the malicious code in interpreted code).

Some code coverage tools require debug symbol information, or require that the
code be recompiled to measure code coverage. These can be significant limitations,
depending on the information available.

c. Applicability

These approaches are more difficult (and expensive) to do without source code.
These approaches require the use of a test suite; developers typically already have a
regression test suite, but end-users typically will not.

Thus, from a software assurance perspective, potential users may want to negotiate
with the supplier to obtain a regression test suite or even the source code if they wish to
apply this technique.

 C-104

d. Assessment

Pros:

 This approach can quickly identify portions of software that are untested;
untested software is particularly likely to be in error, and this includes the
potential for vulnerabilities.

 It can detect certain kinds of malicious code.

Cons:

 It can be expensive, especially if the regression test suite has poor coverage.
This can happen if many situations are difficult to trigger (and thus difficult to
test).

 Malicious developers can evade detection if they work to do so.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Obtain test coverage measurement tools,

− Examine each untested area, to document it or to create tests to cover it.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name Languages Supported URL

GNU gcov C, C++, Ada, Fortran

EclEmma

team

JaCoCo Java bytecode http://www.eclemma.org/jacoco/

Atlassian Clover Java http://www.atlassian.com/softwar

e/clover/overview

 C-105

52. Hardening Tools/Scripts

a. Overview

Hardening tools and scripts modify software configurations to counter or mitigate
attacks, or to comply with policy. In the process, they may detect weaknesses or
vulnerabilities in the software being configured.

b. Details

Hardening tools and scripts can counter or mitigate attacks by changing
configurations. For example, they can disable some connections (reducing the attack
surface), disable some encryption algorithms (which may be weak against attack), and
increase difficulty of attack (e.g., by requiring stronger certificates and passwords). Such
tools often do not simply change the configurations, but report current values and identify
proposed changes. Hardening tools and scripts are a normal part of improving resistance
to attack.

DISA Security Technical Implementation Guides (STIGs), http://iase.disa.mil/stigs/,
provide hardening guidance for many products, as do NSA Guides. Historically these
were often long checklists of manual configuration steps to take during or after
installation, but significant progress has been made on automating these processes.

The Security Content Automation Protocol (SCAP) is a synthesis of specifications
to support security automation. The SCAP language specifications are Extensible
Configuration Checklist Description Format (XCCDF), Open Vulnerability and
Assessment Language (OVAL®), and Open Checklist Interactive Language (OCIL™).
In particular, an “authenticated configuration scanner” is a tool that can be used to
implement configuration hardening. Covering SCAP in detail is beyond the scope of this
document; for more information on SCAP see http://scap.nist.gov/.

c. Applicability

Hardening tools and scripts are typically created for widely-used OTS components.

As an analysis or evaluation tool, this approach applies primarily to systems that
include widely-used OTS components that can be accessed by these tools. Many
applications include, directly or indirectly, components that can be hardened using
hardening tools and scripts. These components range from cryptographic libraries to
entire operating systems. Hardening tools and scripts can often report the current
settings, particularly if they are not the recommended settings; such deviations from
recommended settings may indicate a lack of concern about security in the overall
product. In addition, the hardening tools and scripts can be used to harden these
embedded products, followed by testing of the system that includes them; if the product

http://iase.disa.mil/stigs/
http://scap.nist.gov/

 C-106

cannot work with hardened settings, those changes can be examined to determine
whether this indicates a lack of concern about security. Finally, in some cases a
component needs to be hardened to meet some policy; the process of trying to developing
hardening scripts to meet that policy is likely to reveal problems that may suggest the
product should or should not be used at all.

d. Assessment

Pros:

 Hardening tools and scripts can apply to many larger systems.

Cons:

 They are often indirect indicators of concern for unintentional vulnerabilities,
not direct indicators.

 Understanding the implications of the results requires an understanding of the
hardened components and the larger system.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Obtaining tools,

− Training.

 Recurring resource requirements:

− Annual maintenance fees,

− Examining the results to determine their impact and potential implications.

f. Examples of Suppliers/Products

Hardening is a technique, not a tool, and many tools can be used for hardening. A
list of products that have been validated by NIST as conforming to the Security Content
Automation Protocol (SCAP) and its component standards is available at
http://nvd.nist.gov/scapproducts.cfm.

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

http://nvd.nist.gov/scapproducts.cfm

 C-107

Supplier Product Name URL

Rapid7 Nexpose http://www.rapid7.com/products/

nexpose/

Microsoft SCAP

Extensions for

Microsoft

System Center

Configuration

Manager 3.0

https://www.microsoft.com/

Tenable SecurityCenter http://www.tenable.com/products

/securitycenter

OpenSCAP

project / Red

Hat

OpenSCAP https://www.open-scap.org/

53. Execute and Compare with Application Manifest

a. Overview

An execute and compare with application manifest tool runs an application with a
variety of inputs to determine the permissions it tries to use, and compare that with the
application permission manifest. In practice it may be guided by other information.

b. Details

As with tools that use dynamic analysis, it can report only what occurs given the
inputs used. Static analysis of code can help increase the coverage and focus of the
dynamic analysis, depending on the depth of the static analysis used.

c. Applicability

This type of tool/technique requires that there be a permission manifest (e.g., such
as in the Android operating system).

d. Assessment

Pros:

 Simple and easy to apply.

Cons:

 They do not directly find vulnerabilities (necessarily), but instead warn of
potentially high-risk sets of permissions.

 Can only report differences based on the set of input data used.

 C-108

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Obtaining tools,

− Training.

 Recurring resource requirements:

− Annual maintenance fees,

− Examining the results to determine their impact and potential implications.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name URL

Open Source Permlyzer http://www.cse.psu.edu/~szhu/

papers/permlyzer.pdf

Kryptowire Kryptowire

(Android edition)

http://www.kryptowire.com/

54. Track Sensitive Data

a. Overview

The track sensitive data tool/technique statically identifies sensitive data or data
sources (e.g., due to privacy concerns or confidentiality requirements) and then
dynamically executes the application using the data, tracking it to observe/detect
exfiltration attempts or misuse of the data.

b. Details

This approach tracks data as it flows through the system, often down to the variable
assignment level. Historically this approach has been challenged by the overhead it
imposes, although progress has been made on this front. The approach requires that
sensors be appropriately placed for observation of data through flows.

 C-109

c. Applicability

This technique is well-suited for smaller footprint applications, such as mobile
applications.

d. Assessment

Pros:

 Can detect potential exfiltration of sensitive data, even through multiple
complex layers of functionality,

 Can be used to detect unacceptable data sharing between applications.

Cons:

 Only detects problems when they dynamically arise,

 Requires a strong understanding of what is sensitive (and thus requires
protection) in a given context.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Investment for licensing of various tools,

− SME expertise in systems and security analyses.

 Recurring resource requirements:

− Annual maintenance fees.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name

Language or

Application Type URL

 TaintDroid Android http://appanalysis.org/

Berkeley TaintEraser http://appanalysis.org/privacysco

pe/osr_tainteraser.pdf

 C-110

55. Coverage-guided Fuzz Tester

a. Overview

A coverage-guided fuzz tester is a fuzz tester that uses code coverage information to
determine new inputs to test.

b. Details

As noted in the section on fuzz testers (in subsection C.38), fuzz testing or fuzzing
is an automated black box testing technique for software that involves providing invalid,
unexpected, or random data to the inputs of a computer program. See that section for
more about fuzzing in general.

A coverage-guided fuzz tester uses information about code coverage information to
help guide it to new inputs for testing. It may monitor coverage of statements, branches,
or data flows. This coverage information may include the number of times something
has occurred, instead of simply noting whether something has occurred at all. This
additional information can, in some cases, enable a fuzzer to detect and check paths that
many other fuzzers cannot detect [Zalewski2014].

A coverage-guided fuzz tester is a hybrid tool, not a strictly dynamic tool, since
these tools take advantage of static code information.

c. Applicability

Coverage-guided fuzz testing is in theory a widely applicable testing technique for
software. However, it does require the ability to monitor the paths of a program being
executed (something that traditional fuzzing typically does not do). At the time of this
writing coverage-guided tools do not handle network protocols well, although further
research and development may change this.

d. Assessment

Pros:

 Fast ramp-up for use,

 Fast method of identifying some critical issues in software systems,

 Extremely cost effective approach.

Cons:

 Not a comprehensive testing approach,

 C-111

 Only certain types of security flaws would typically be discovered by fuzz
testing,

 Typically has diminishing returns.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Small investment for licensing (fuzz testers are often inexpensive compared
to other analysis tools).

 Recurring resource requirements:

− Annual maintenance fees are often minimal to none.

f. Examples of Suppliers/Products

Many programs implement fuzz testing. In addition, some interviewees stated that
they found it just as effective to write specialized fuzzing programs, since they are fairly
easy to write and specialized fuzzers can target properties of specific applications and
platforms.

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name

Language or

Application Type URL

Google American

Fuzzy Lop

(AFL)

POSIX (including Linux) http://lcamtuf.coredump.cx/afl/

LLVM LibFuzzer POSIX C/C++ http://llvm.org/docs/LibFuzzer.ht

ml

56. Probe-based Attack with Tracked Flow

a. Overview

The probe-based attack with tracked flow tool/technique observes normal behavior
while tracking data and control flows within the program (possibly through several tiers),
sends probing inputs to determine patterns of behavior that might indicate a potential
vulnerability, then based on these patterns, performs simulated attacks to identify actual
vulnerabilities.

 C-112

b. Details

These tools combine dynamic analysis (because the code is executed) with static
analysis (because the statically defined control and data flows of the program are
monitored for behavioral changes). This approach has similarities to coverage-guided
fuzz testing; however, it has information on what is “normal” behavior (and can exploit
this difference). This approach also has similarities to web application scanners, and
some may even combine them in one category, but unlike web application scanners (as
defined in this paper), these tools additionally use static analysis approaches to track data
and control flow.

c. Applicability

This approach may be especially helpful when the software can be viewed as
repeatedly taking input and then responding to it, e.g., a typical web application.

d. Assessment

Pros:

 Fewer false positives, since reports are based on actual execution of simulated
attacks.

Cons:

 Significant risk of false negatives; these types of tools can report a potential
problem only if that path is executed and can create an exploit. This risk can be
reduced by improving its automated test suite coverage.

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Investment for licensing of various tools,

− SME expertise in systems and security analyses.

 Recurring resource requirements:

− Annual maintenance fees.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

 C-113

Supplier Product Name

Language or

Application Type URL

Synopsys Seeker16 Java JVM, .NET

framework, PHP, others

http://www.coverity.com/products

/seeker/

57. Track Data and Control Flow

a. Overview

The track data and control flow tool/technique tracks data and control flows from
inputs and other data sources to data sinks, and reports when rules (predefined or user
defined) are triggered indicating a potential vulnerability.

b. Details

These tools combine dynamic analysis (because the code is executed) with static
analysis (because the statically defined control and data flows of the program are
monitored). For example, such a tool may determine that a data flows from an untrusted
source (e.g., an untrusted user input) to a sensitive sink (e.g., a SQL command execution
engine) without going through a validator or sanitizer. These tools do not necessarily
need to receive attack input, since they can simply monitor taint as it flows through a
system, but they do have to execute the potential path to report it.

c. Applicability

These approaches are especially helpful when the software can be viewed as
repeatedly taking input and then responding to it, e.g., a typical web application.

d. Assessment

Pros:

 Fewer false positives, since reports are based on actual execution.

Cons:

 Significant risk of false negatives; these types of tools can only report a potential
problem if that path is executed. This risk can be reduced by improving its
automated test suite coverage and making it easier to scan all paths.

16 Note that Seeker includes the ability to monitor and correlate information across tiers (e.g., web

application server, back-end/servlet, and DBMS), which can aid its analysis (e.g., it can track code inside
the DBMS that is executed as stored procedures and correlate that with the corresponding request).

http://www.coverity.com/products/seeker/
http://www.coverity.com/products/seeker/

 C-114

e. Resource Requirements

Resource requirements include:

 Initial resource requirements:

− Investment for licensing of various tools,

− SME expertise in systems and security analyses.

 Recurring resource requirements:

− Annual maintenance fees.

f. Examples of Suppliers/Products

The following are examples of suppliers and their products. These examples are
provided to help readers understand this tool/technology type. This list is illustrative, and
no endorsement is implied.

Supplier Product Name

Language or

Application Type URL

Contrast

Security

Contrast JVM, .NET, Node.js,

ColdFusion

https://www.contrastsecurity.com/

Note that Contrast also includes capabilities that are separately listed under origin

analyzer, web application vulnerability scanner, configuration checker, and bytecode
weakness analyzer. See those tool/technique types for more information.

 D-1

Appendix D.

Detailed Compositional Views

Currently tools and techniques for assurance are often discretely applied within
specific software development lifecycle (SDLC) processes. There is often little
integration, correlation, and syntheses of analysis tools and results throughout the
lifecycle. We believe that analysis should instead be integrated into the SDLC, from
development (including developing requirements, design, implementation, and test),
operations, sustainment, and disposal.

Although some organizations already integrate analysis throughout the lifecycle,
this can be especially complex in the DoD. The DoD is highly distributed and large-
scale, and it has widely varying environments (from “office to desert”). In addition, the
DoD uses many OTS components, making it more difficult for the DoD to “build in”
trust.

We encourage program managers to view analysis as input to risk decisions
holistically, throughout the lifecycle. The following two figures show how analysis
results could be integrated throughout the lifecycle in a continuous manner. The first
shows analysis during development and sustainment, where analysis results are compared
and correlated, synthesized, examined to determine their impact and consequence,
leading to a risk decision. Risk decisions may change any part, creating a feedback loop
throughout the lifecycle. Once a system is in operations, information derived from
operation should also be used as input.

Policymakers should also consider an enterprise view. They should work to gather
information from the various systems (as noted above) to determine overall enterprise
trends. Given that information, they should then determine the key gaps in the analysis
techniques that make it difficult to deliver software with the requisite software assurance
and acceptable supply chain risk for its missions.

 D-2

Analysis During Development and Sustainment

Analysis During Operations

Requirements

Target of Evaluation (TOE)

(SW: Incl. Source, Executable, and/or Bytecode)

Static Analysis

Biz/Mission

Layer
Architecture

Layer

Detailed

Design Layer

Code

Layer

Configuration/

Environment

Parse/

Extract

TOE Environment

Global

Vulnerability

Information

incl. malware info

Compare/Correlate and Identify Trends (incl. human review)

Synthesize

(Compose/Integrate)

including incident determination

Impact/Consequence Analysis

Risk Decision

S/W System Requirements

- Criticality Analysis (Func & System)

- Vuln Analysis (Compliance (incl. Arch, Reg, Sec),

Weakness/Vuln (incl: CWE, CVE))

Mission/Business Requirements

(Processes)

feedback

Dynamic Analysis

Selection

Strategies

(incl. Fuzz,

Pen test)

Test

Case

Generation

Test

Execution

Test cases

Test jig

BIT,

debug I/Fs

Operations

Abstracted Data/Information

Target of Evaluation (TOE):

Operational Representation

IDS/IPS/

incident

or other

Intrusion

Alerts &

Forensics

Network

Architecture

(incl. hosts,

interconnects)

w/ TOE

Detailed

Design Layer

(D/ B tables,

data flow over

interconnections)

Audit

Information

(logs - what

actually

happened)

Operational

Configuration

incl.

Hardening

(TOE & its env,

incl. network)

Extract

TOE Environment Representation (network infrastructure where TOE resides)

Problem

Reports

(bugs,

features,

feedback, ..)

Access Control

Constraints

(TOE & its env)

N/W and Host

Scan/Test

Results

(incl. Security)

Filter shaped
by TOE

Feedback (e.g.,

users, admins,

external orgs)

Results (to compare & correlate)

Patch Mgmt incl.

firmware patches

(availability,

expected impact,

patch status)

Both pre & post deployment

(In pre-deployment, to-be

testing in staged op. env.)

Upgrade

Mgmt incl.

firmware upgrade

E-1

Appendix E.

Software State-of-the-Art Resources (SOAR)

Matrix

For the contents of Appendix E, refer to the separate electronic file provided to the
sponsor containing the Software State-of-the-Art Resources (SOAR) Matrix.

F-1

Appendix F.

Mobile Environment

This appendix focuses on software assurance for mobile environments. Mobile
computing has been defined as “being able to use a computing device even when being
mobile and therefore changing location. Portability is one aspect of mobile computing.”
[MobileMAN]

The DoD Mobile Device Strategy [2012] defines a mobile device as “a handheld
computing device with a display screen that allows for user input (e.g., touch screen,
keyboard). When connected to a network, it enables the sharing of information in
formats specially designed to maximize the use of information given device limitations
(e.g., screen size, computing power). Mobile devices provide the conveniences of
conventional desktop or laptop computers in a more portable package. Popular form
factors for mobile devices are smart phones and tablets.” For our purposes, we focus on
smartphones and tablets, such as those running Android or iOS operating systems, as
mobile devices. We do not further distinguish between smartphones and tablets since,
although they are different in size, they are otherwise similar. In many cases they run the
same operating systems and applications, and while some tablets cannot connect to cell
towers, others have this capability built in.

We do distinguish mobile devices from basic cell phones and laptops. Basic cell
phones have limited functionality, such as making phone calls, texting, and searching the
web, but lack a rich application framework capable of supporting a broad set of
applications. Laptops can run many applications, but are less portable.

The following sections provide an overview of mobile components for the
enterprise, aspects of mobile computing that are differentiators or especially relevant
compared to other computing environments, and changes that have been made to the first
draft of this paper specifically to discuss mobile computing issues.

1. Mobile Components for the Enterprise

Mobile systems are more than just the mobile hardware carried by users. For
example, the DISA STIGs divide mobile systems further by defining four mobility
security requirement guides (SRG) that “must be considered together when implementing
an enterprise mobility solution within DoD.” [DISA STIG MDM]:

 F-2

 Mobile operating system (OS) SRG “addresses security for the operating system
installed on mobile devices.”

 Mobile Device Management (MDM) SRG “addresses centralized management
of mobile operating systems and applications. The MDM SRG also covers
aspects of device integrity verification and enterprise email.”

 Mobile Applications SRG “addresses the security of applications that run on
mobile OS.”

 Mobile Policy SRG “addresses management, operational, personnel, and
physical security controls related to mobile devices.”

Some organizations support or use a “bring your own device” (BYOD) policy, in
which users own the mobile device, but the enterprise data continues to belong to the
enterprise. DoD policy does not approve of BYOD for DoD purposes [DoD CIO].

Some enterprises do not use an MDM; in that case, they may choose to use a mobile
application management (MAM) approach instead. MDMs enable an enterprise’s
information technology (IT services) to “secure access to the device by requiring the use
of a passcode and keep sensitive data out of the wrong hands by remotely wiping a lost or
stolen device. Other basic features of MDM tools include the ability to enforce policies,
track inventory and perform real-time monitoring and reporting.” For some
organizations, this may be too heavy-handed, particularly those with a BYOD policy.
MAM approaches focus on managing only specific applications, giving enterprises the
ability to “manage and secure only those [applications] that were specifically developed
to work with a particular MAM [system, such as deleting corporate email without
deleting personal photos].” [Steele 2013] [Madden]

A particular mobile device contains a large stack of software, including an operating
system, various middleware that provides common services, in some cases an MDM
agent, and a set of applications. In practice, many mobile device applications depend on
external services (often running in a cloud), and these services may have access to the
same data the application has.

Many enterprises also use additional software specifically to help separate
business/enterprise data from personal data while supporting collaboration, typically in
combination with an MDM or MAM. Examples of such software include “Good for
Enterprise” from Good Technologies and “Secure Workspace” from Blackberry Ltd, both
supporting Android and iOS environments. These typically provide services such as
business/enterprise email, enterprise infrastructure web browsing, attachment viewing,
and document creation.

It is important to note that there are differences in threats and use cases for
traditional consumers, enterprises, and users in a tactical environment. For example, in a

F-3

tactical environment, communication is unreliable and slow, and an inability to use some
data (including due to interruptions) could result in death.

Many documents exist that discuss securing mobile devices in the enterprise,
including those focusing on federal government needs. These include Government
Accountability Office (GAO) report GAO-12-757 [GAO-12-757], NIST SP 800-124rev1
[NIST 800-124], and the already-noted DoD STIGs. At the time of this writing, NIST is
in the process of documenting technical considerations for vetting applications for
Android mobile devices [NIST 800-163], although this is not publicly available. The
Federal CIO Council has published a number of documents (see [Fed CIO Council 2013],
[Fed CIO Mobile Security 2013], [Fed CIO Mobile 2013], [Fed CIO Arch 2013], and
[Fed CIO Use Case 2013]). The European Union has also published relevant material
[ENISA17].

The DoD Mobile Device Strategy [DoD Strategy 2012] guides overall DoD strategy
for mobile devices, and has been followed up by a Department of Defense Commercial
Mobile Device Implementation Plan [DoD Implementation]. The implementation plan
includes plans to establish an enterprise mobile application store (MAS) capability that
operates in conjunction with an MDM system. DISA has established, in response, the
“DoD Mobility Program Management Office (PMO)” [DISA DoD Mobility PMO].

2. Mobile Computing Differentiators and Issues

Mobile devices are fundamentally computers designed to move with users. Thus,
they are subject to many of the same issues as laptops and desktops. This is particularly
true for laptops; both laptops and mobile devices can typically use Wifi networks, both
can access internal networks (if configured to do so), and both directly interact with
users.

However, some issues are specific, or often more important, on mobile devices.
Our interviewees and other sources identified several issues that we have merged into
larger groupings as follows:

1. Expectations and behavior by users and enterprises are different with mobile
devices.

a. Consumerization. Developers of mobile devices and operating systems tend
to focus on the consumer market (a trend that is sometimes called
“consumerization”). Features for enterprises have been added, but they are
often not the driver for mobile device development.

17 European Network and Information Security Agency

 F-4

b. Expected ease-of-use. Users and enterprises expect that mobile devices can
be easily used for basic functions without any user training. This
expectation is not always met, but it still influences which applications users
and enterprises select. As a result, usability is very important.

c. Tactical, enterprise, and general consumer users differ in their expected use

and risk tolerance. In particular, in the tactical environment, communication
is limited and unreliable, so mobile applications must sustain data within the
device, e.g., a map application cannot rely on a remote tile server always
being available in a tactical environment. Also, tactical users do not want to
flip between different applications that use a map; they need to be able to see
one map and decide what information is important to display. Finally, in a
tactical setting, interruptions can be lethal. Also, in general consumer use,
risk tolerance tends to be higher than in enterprise and tactical environments.

d. Bring your own device (BYOD) issues. Enterprises must decide whether
they will use a BYOD policy, and if so, what its details will be. A BYOD
policy involves new issues not typically addressed previously by enterprises.
For example, if a smartphone is subverted, who is responsible, the user or
the enterprise? Fundamentally, the enterprise owns the business data, but
under a BYOD policy the device may be owned by the user, creating a
potential for conflict. Some products, such as Mobile Device Managers
(MDM) and GOOD, try to provide enterprise control of a mobile device.
BYOD creates some additional risks, which may be acceptable in some
environments and not acceptable in others. Note that the DoD STIGs reject
BYOD and establish mobile devices as government-issued devices, along
with DoD repositories of approved applications.

e. Application installation is expected to be safe. There is a widespread
expectation by users that installing a mobile application is relatively safe.
Mobile device suppliers work hard to limit application privileges, provide
mechanisms to isolate applications from each other unless the applications
permit it, and vet applications. However, these are necessarily imperfect
steps. In part, this assumption may be because mobile phones users continue
to think of their smartphones primarily as communication devices (e.g., for
phone calls and text messages). People often do not understand the
additional risks that are created by installing additional applications. Thus,
while malicious applications can be a problem for any system, the
assumption that applications are safe can work against the user.

f. Users expect that they will not wait long to install an application. This
expectation can limit the amount of independent vetting (e.g., of privileges
and behavior) that can be done on third-party applications before they are

F-5

allowed to be installed on a device. There is significant market pressure for
a rapid application analysis capability on the order of less than an hour.

g. Users often grant application privilege requests without thought. In
practice, users often just permit whatever the application requests. One
experimenter gave a set of students a tic-tac-toe game that requested many
unnecessary privileges (e.g., to take audio and video), and yet only one user
questioned it, and all students agreed to install it.

2. Mobile devices have a big externally-accessible attack surface that is even more
accessible to external attackers than laptops.

a. Always on. Mobile devices are typically operational at almost all times.
This is in contrast to laptops, which are often not active when being moved.
As a result, there are more opportunities over time for an attacker to subvert
a mobile device.

b. Always communicating. Mobile devices are typically always
communicating with external systems. Smartphones typically have access to
3G/4G networks as well as Wifi, Bluetooth, and sometimes near field
communications; as a result, their network communication capability is
immediately usable almost anytime and anywhere. This makes it easy to
send information out without user intent or knowledge, provides a beacon
for anyone to find that device or user, and creates a constantly available
network attack surface of the device. The device can be attacked at any time
through the communication layer, even when it is in the owner’s physical
possession.

c. Always with the user. Mobile devices are nearly always with their user,
giving the devices ample opportunity to collect data about the user for
potential exploitation. Note that typically mobile devices have more sensors
and actuators (as discussed below) than laptops or desktops, creating a
potentially dangerous combination.

d. Second processor and operating system for external communication.
Devices that support mobile communications capability (e.g., 3G or LTE)
typically use a separate baseband processor running a separate real-time
operating system (RTOS) and programs that manage everything related to
the radio and often other capabilities as well (e.g., GPS and USB). Most
users are unaware of this processor, RTOS, and applications, in contrast to
the user-visible operating environment (e.g., Android or iOS). The baseband
processors and their associated software are typically poorly understood,
poorly documented, and not externally peer reviewed. In addition, the
baseband processor typically trusts whatever data it receives from a base

 F-6

station (e.g., in a cell tower). Remarkably, the baseband processor is usually
the master processor, whereas the application processor (which runs the
mobile operating system) is the slave. Thus mobile devices are exposed to
over-the-air attacks that may enable total control of the device, yet these
attacks may be poorly countered or mitigated [Holwerda 2013].
Note that some non-mobile computers also have separate processors and/or
communication channels that can override the operating system. For
example, Intel Active Management Technology (AMT) is hardware and
firmware technology for remote out-of-band management of personal
computers; this provides remote functionality even if the computer is
powered off (as long as the power is provided), and can perform functions
such as remotely powering up, power recycling, changing BIOS settings,
and rebooting to a different operating system.

3. Mobile devices have a big internally accessible attack surface, which differs
from user expectations that applications are isolated.

Applications can exploit inter-application communication mechanisms.
Applications can communicate directly or indirectly with other applications
or services (including network services). As a result, it is sometimes easy
for one application to get around restrictions placed on it by communicating
with another application or service without user knowledge. This is
counterintuitive to the user expectation that installing different applications
is safe.

4. Mobile devices have additional assets that require protection.

a. Mobile devices have more sensors and actuators. Mobile devices typically
include GPS receivers (for location), camera, microphone, accelerometers,
speakers, vibrators, video displays, and so on. Other devices (e.g., laptops)
may have some of these, but typically not as many or as accessible. These
sensors and actuators, coupled with being always on and always with the
user, means that mobile devices often have significant access to private
information (e.g., where someone goes and how long), and enable the
synthesis of private and public information. As a result, if subverted they
can become privacy-eliminating monitoring devices, enabling stalking and
other dangerous behaviors.

b. Mobile devices include significant amounts of personal private data. Mobile
devices store information such as contacts and calendars, as well as overall
user behavior. This, combined with their always being with the user as well
as having more sensors (including location information), concentrates a great
deal of private information. This private information is lucrative to some.

F-7

c. Mobile devices encourage concentration of both personal and business data

into one device. People often do not want to carry two phones, and having
two phones makes it difficult to merge data (e.g., to create a common
calendar with both personal and business commitments). This merging
creates a potential conflict for enterprise management:

i. An enterprise decision to “erase the phone” might erase personal data as
well, leading to hesitation to erase the phone.

ii. Mobile devices encourage data storage and backups on their commercial
cloud services. However, enterprises may not want their data stored
there, since these other services may not protect or may even exploit
that enterprise data.

iii. Users often connect to external services (Google, Facebook, banking,
cloud services, etc.), which then provide an avenue for malicious access
and software to enter the mobile device and extract, modify, erase, or
make unavailable data and services (both personal and enterprise).

5. Malicious applications can create behavior undesired by the user or enterprise.
Malicious applications are a problem for any computing environment, but some
aspects of the mobile environment create distinctive opportunities for
exploitation.

a. Grayware. A significant threat is grayware, that is, applications that are
vaguely legitimate but that push the boundaries or go beyond what the user
or enterprise may be comfortable with. For example, they may collect and
redistribute user data for monetization or user profiling. One tool supplier
said that their customers were really worried “about risky behavior and
privacy issues… [they’re] not really looking for vulnerabilities like on other
platforms, [they’re] looking for intended undesired behavior.”

b. Application collusion. Many mobile users are not aware that applications
may collude; yet if applications collude, the impact can be significant.
Different applications may have limited privileges that individually make
sense, but together can work around the limitations imposed by the operating
system. There are two types of application collusion: direct collusion (e.g.,
sharing files or directly sending messages to each other) and covert channels.

6. There is a lack of transparency for mobile users and software developers.

a. Little information provided to users and enterprise. Relatively little insight
is provided to users and enterprises that reveals what information is being
shared or transmitted between applications, or between applications and the
network. The information sharing could be either an unintentional

 F-8

information leak or intentional malicious sharing not desired by the user.
There is some information, e.g., in an application manifest or when an
application requests a large functionality, but this is often not enough, and
users often do not have enough knowledge to take action on it. This lack of
insight makes it difficult to have a “rich feedback loop” (as one interviewee
put it) where users can object to undesired functionality for security reasons.

b. Little information provided to developers. Third-party libraries are typically
used to develop applications, but in many cases the developers do not know
what the libraries really do, and the libraries are available only in executable
form. As a result, third-party libraries may choose to do malicious things
(such as share personal information) in ways that neither the end user nor
application developer nor any of their organizations are aware of. Some
third-party libraries intentionally violate privacy so that their makers can
monetize their library. This creates undesirable incentives, since the library
developers are paid to do this. Even enterprises often don’t know exactly
what activities are performed by the applications they have developed
because of these third-party libraries.

7. Mobile devices have key characteristics in hardware, operating
system/middleware, and application development that are unique or especially
important. These characteristics create benefits and limitations specific to the
mobile environment.

a. Hardware

i. Small form factor. Mobile devices’ small form factor leads to different
threats in different deployment scenarios. They are small and thus easy
to lose, hand over, lose custody of, or have stolen (temporarily or
permanently). For example, an adversary could acquire it in combat.

ii. Limited local computing resources. Mobile devices typically have far
more limited resources in terms of memory, storage, and processing as
compared to laptops and desktops. This implies that software must
often be developed specifically for the device. See the discussion below
on limited computing resources.

iii. Limited electrical power. Mobile devices have limited electrical power,
and are more likely to be used without being plugged into power.
Applications can unintentionally or intentionally drain battery power.
This can result in a denial-of-service that isn’t usually considered the
same way on laptops or other general-purpose computers. This
increases the opportunity for “juice jacking,” where a charger is offered

F-9

that clandestinely attacks the device [Krebs] (although there are devices
that can counter this attack).

b. OS & middleware

i. Applications must be given permission to perform some actions. On
Android, many of these privileges are granted at install time through a
static manifest that comes with the application. On iOS, these privileges
are primarily obtained through one-time requests by the application at
runtime after installation. This is in contrast to traditional Windows or
Unix-like desktops (including MacOS), where, typically, applications
run with full user permissions and have access to the data developed by
other applications.

ii. Enterprises can control what applications are used. Enterprises can use
MDMs, application stores, and other mechanisms to limit which
applications and associated privileges can be used by mobile devices
approved for their enterprise. This “whitelisting” approach for
applications is like a “walled garden”; this was unacceptable to many
PC users, but it seems to be acceptable to many mobile users.

iii. Application development is more like extending a framework. Mobile
applications are built into a rich ecosystem that lets them work with
other applications and the underlying platform. Applications are not
really standalone; rather, they are an extension of an existing framework
combined with a large set of third-party libraries. This is true to some
extent for all modern systems, including servers, desktops, and laptops
(e.g., .NET framework and J2EE), but in mobile applications it is
typically impractical to avoid them.

c. Applications

i. Mobile application software is event-driven. While many non-mobile
programs are event-driven, all mobile applications are inherently event-
driven and interconnected to other components. This makes them more
challenging to analyze with static tools. The event-driven nature makes
some kinds of dynamic analysis easier during testing, but performance
limitations greatly limit the types of dynamic analysis and monitoring
that can be done operationally.

ii. Mobile applications typically undergo rapid change. There are millions
of mobile applications, and both the initial development and update
lifecycle are often relatively short. Among actively updated
applications, “the average update cycle for apps with at least 10 versions

 F-10

is over two months on iOS but just a month and a half on Android.
Windows Phone is the fastest-updating, at just over a month.” [Koetsier]
A multi-month analysis process is incompatible with these update cycle
times; analysis must fit within these compressed mobile computing
times. A primary market pressure is for rapid application analysis
capability on the order of less than an hour. Although there is still a
place for in-depth analysis, the challenge is to perform useful analysis
within limited time as dictated by market pressures.

8. Application stores

a. Application stores can help improve security. An application store is a
repository for submitting and downloading applications. Application stores
set minimum requirements for applications, perform evaluations, host user
reviews, and ensure that application developers cannot make a malicious
variant for just particular users. These can make malware distribution more
difficult and simplifies offline analysis.

b. Application stores are no panacea. User reviews are typically for
functionality, not for security. Thus, a threat agent with resources can
deliver a well-functioning application that can also perform malicious
activities. Application stores can track what users are installing and provide
malicious variants for specific users. Whether or not this is significant
depends on the level of trust granted the application store. Mobile devices
running Apple iOS normally only allow the Apple application store to be
used. It is possible to use other application stores on Android devices
(depending on the device configuration).

9. The mobile environment is newer and rapidly evolving, potentially opening
significant vulnerabilities.

New platforms may provide new vulnerabilities. Mobile devices include
many mature components, but as complete architectures the current mobile
devices are relatively new platforms. These platforms also continue to
rapidly evolve. This makes them potentially easier targets, since attackers
are likely to find significant unaddressed vulnerabilities in a new platform or
new functionality.

3. Mobility – Key issues

The following are key issues in mobility. Some of these were noted above as
differentiators, but this section discusses them in more detail.

F-11

a. Market Leaders

At the time of writing this report, the key market leaders for mobile platform
operating systems are Google (through Android) and Apple (through iOS), with small
shares held by Blackberry Limited and Microsoft. The numbers vary month to month
and also vary significantly based on the sample set (e.g., by region, by device type, and
by type of user).

The following table shows the market share percentages of smartphone operating
systems sold worldwide in specific quarters of 2015 as determined by Gartner [Gartner
2015] and IDC [IDC 2015]. Gartner states that global sales of smartphones to end users
in 3Q15 totaled 353 million units. These are similar to previous data from 2013
[Gartner2013] [IDC 2013].

Worldwide Smartphone Sales to End Users by Operating System

Operating System

3Q15 Market Share

(Gartner) 2Q15 Market Share (IDC)

Android 84.7% 82.0%

iOS 13.1% 13.9%

Microsoft 1.7% 2.6%

BlackBerry 0.3% 0.3%

Others 0.3% 0.4%

These numbers do not tell the whole story; the enterprise view is different. Apple
iOS is more common in enterprises than these numbers suggest, although iOS’s
dominance has slowly decreased over the years as Android has become more common in
enterprises. The Good Technology Mobility Index Report Q2 2015 reported that among
the activations for its enterprise product, iOS’s overall market share was 64% (compared
to 70% before) and Android grew to 32% (compared to 26% before), Windows was 3%
and Windows Phone was 1% [Good 2015]. The previous Good Technology Mobility
Index Report Q2 2014 reported that the total number of activations was 88% for iOS and
12% for Android; for that one quarter iOS activations were 67% and Android device
activations were 32% [Good 2014]. ZDNet examined the 3Q2012 data from Citrix
Zenprise as a proxy for enterprise use, and found that in North America the market shares
were iOS 55%, Android 41%, and Windows mobile18 4%. [Dignan 2013]. Enterprise
file sharing and hybrid cloud storage company Egnyte determined that in 1Q2013, iPhone

18 It is not entirely clear, but it appears that this particular source did not distinguish between “Windows
mobile” and “Windows phone” and instead merged them together into the category “Windows mobile.”
This is unfortunate, since they are not the same. Windows Phone is incompatible with Windows Mobile
devices and software. Microsoft announced in February 2010 that Windows Phone will supersede
Windows Mobile, deprecating Windows Mobile.

 F-12

had 48%, iPad 30%, and Android (phones and tablets) were 22% [Lomas 2013]. One
report notes that on average Android has far more downloads per app than iOS (60,000
vs. 40,000), but that developer revenue per app is more for iOS than Android (the average
Android app download brings 2 cents to its developer, while Apple brings in 10 cents)
[Louis 2013]. The reason for this discrepancy is that many Android sales are low-end
smartphones [Bradley 2013], and the evidence above suggests that these low-end devices
are less likely to be used for enterprise work.

Other statistics involving mobility are available via MobiForge [MobiForge].

b. Apple and Google Approaches

Apple (iOS) and Google (Android) have different business models and approaches.
Apple is heavily vertically integrated in hardware, operating system, middleware, and a
standard set of applications. Google Android is more like an ecosystem, with multiple
suppliers of hardware, a single initial source of operating system and middleware
(although suppliers are able customize and contribute to it), and a standard set of
applications from Google that is often supplemented by hardware suppliers.

Apple has a more centralized and controlled environment. Apple strictly controls
the hardware components, iOS operating system, frameworks, and the APIs onto which
applications interface. Apple chooses the suppliers it uses, sets the supplier assurance
criteria for their suppliers, and implements this criteria set. For example, applications go
through a vetting process before they are accepted into the Apple store for purchase.
Apple does not reveal many aspects of its vertically integrated solution, including details
of how it evaluates components (including applications) for acceptance, but it is known
that Apple does evaluate applications submitted to the Apple store. A developer submits
the application, and is provided a report/feedback as to whether or not the application is
approved for acceptance into the Apple application store. There is limited visibility into
the level of rigor in the Apple evaluation and certification process for application
approval. In particular, the detailed testing method, and the rigor to which these tests are
administered, is not revealed.

Android on the other hand has an ecosystem of hardware with multiple suppliers
providing hardware solutions. It has an open source operating system, frameworks, and
APIs that the applications developer community must use as their foundation of
applications development and delivery. For supply chain assurances and for the purpose
of software assurance, both must be considered. Thus, enterprises chose which hardware
to use, which then implies a software stack associated with that hardware, which then in
turn is used to install and run applications.

In the case of the Android hardware platform providers (such as Samsung and
Motorola), the supplier of the hardware platform (smart phone or tablet) is responsible for

F-13

ensuring that the operating system, frameworks, and APIs are further integrated into the
hardware solution with appropriate drivers (in most cases provided by the hardware
supplier). Hardware platform providers often add additional applications as well. Each
platform provider has its own set of designs, suppliers, integration processes, test
processes, and acceptance criteria for their platform.

The Android operating system, frameworks, and APIs are based on open source
software and allow for community contribution. However, the software stack used in
many mobile devices is significantly controlled by Google. Google releases Android in
two different parts, with significant licensing differences. The first part is the Android
Open Source Platform (AOSP) codebase. This provides the basic components of a
smartphone operating system such as the operating system kernel and user interface
framework. The AOSP is released as open source software, “though it has been criticized
for performing the actual development largely behind closed doors.” The second part is
Google Mobile Services (GMS), also called Google Services, and this portion is
proprietary. GMS can itself be primarily divided into two parts, Google Play Services
and the Google Play Store. “Google Play Services provides a wealth of [additional] APIs
and system services [such as] for Google Maps, Location, [and] in-app purchasing…
while the Google Play Store includes a widely-used collection of apps.” [Bright 2014]
The Google Play services in particular allow Google to directly update many
components, and exert additional control over suppliers. Google separately licenses its
proprietary GMS; hardware manufacturers can only use this software and certain
trademarks if they meet Google’s compatibility standards [Google Commerce 2013].
Applications that use GMS Google Play Services will not work on Android systems that
lack GMS. Thus, a significant portion of the Android software is open source software,
but many Android devices also include a large amount of proprietary software.

Android application developers typically submit their applications to Google Play.
Google Play typically posts these submissions within a few hours, and while there are
some tests [Mills 2012], this short time only allows time for some basic scanning and
overall suggests relatively little rigor. This suggests that Google Play relies primarily on
the mobile operating system mechanisms to isolate applications, and it presumes that
developers will do essentially all their own testing. It is possible for organizations to
create their own app stores; users can typically choose to use these alternative app stores
or install software directly.

Federal government research has primarily focused on Google Android. Examples
include the DARPA Transformative Apps (TransApps) program, the NIST work on
evaluating applications, TaintDroid, and the Security Enhancements for Android program
(included in Android 4.3 and now enforced in Android 4.4). We believe this is primarily
because the Android platform is far more open to experimentation, making it far easier to
perform research and then contribute or deploy results. For example, DARPA TransApps

 F-14

program manager Doran Michels said that “in 2010, the iPhone was the darling of
consumers, but it was a closed platform that we couldn’t adapt for our purposes”
[Schechter 2013].

Apple iOS and Google Android have historically had different approaches to
granting privileges, even though both fundamentally separate applications from each
other, but changes to Android have made them more similar. On Apple iOS, most
permissions are requested at run-time by the application; the user can then grant or deny
the request at that time. That decision will be remembered for reuse later, and users can
also change that decision later.

On Google Android, most permissions are listed in a static “manifest” that comes
with the application. Users can see what permissions are requested before installing the
application. If the device is running Android version 5.1 or lower, or the application
targets SDK version 22 or lower, there is an all-or-nothing choice at install time. If the
application lists a dangerous permission in its manifest, the user must grant the
permission when they install the application; if they do not grant the permission, the
system does not install the application at all. However, if the device is running Android
6.0 or higher, and the application targets SDK version 23 or higher, there is no all-or-
nothing choice. In this case, the application must list the permissions in the manifest, and
it must request each dangerous permission it needs while the application is running. The
user can grant or deny each permission, and the application can continue to run with
limited capabilities even if the user denies a permission request [Google2016]. This
provides users of newer Android devices with finer-grain security decisions if the
application supports them.

However, in many cases users will simply blindly accept requests regardless of
when they occur.

Note that both iOS and Android are constantly being updated, and that some of
these updates add security features. For example iOS version 7 adds several features of
interest to the government, adding (1) the ability to control which applications and
accounts can be used to open documents and attachments, (2) the ability to automatically
connect with a VPN when managed applications are launched, and (3) automatic
enabling of data protection (encryption) of all third-party application data [Breeden
2013]. Android version 4.4 adds security features as well; for example, it strengthens
application isolation by using security-enhanced Linux (SELinux) in enforcing mode and
applies VPNs per user on multi-user devices [Android.com 2013].

The Department of Defense Commercial Mobile Device Implementation Plan [DoD
Implementation] states that “a multi-vendor mobile operating system environment for
CMDs shall be supported to enable a device-agnostic procurement approach.” Thus, it is

F-15

likely that in the DoD both Apple iOS and Google Android mobile devices will be
present in the short term, and perhaps others as the market evolves.

c. App (application) Stores

“The largest [application] stores are believed to be the Apple App Store – Apps for
iOS handsets only – and Google Play – apps for Android handsets only.” Canalys
reported in May 2013 that both Google Play and the Apple App Store each have over
800,000 applications. There are other app stores; GetJar claims to be the largest
independent app store as of September 2012 (not tied to one operating system, device
provider, or carrier), with 600,000 mobile applications. Some device manufacturers
(such as Samsung) and carriers also have app stores. “The Apple App Store enjoys a
monopoly over apps for iOS handsets, unless consumers use jailbreak apps to break the
restrictions Apple places on how they use their handsets.” Note that enterprises can enter
agreements with Apple so their users can get enterprise apps on their iOS devices.
“Google Play is not a monopoly, but benefits from Android handsets being the most
popular type of smartphone – Google Play is also the default store, coming pre-installed
on masses of Android handsets.” [Mobiforge]

Application stores are repositories of application; their owners can determine the
criteria for accepting and removing an application. Third-party application stores can be
centralized or distributed, rigorous or not. In Android, “franchise” applications stores are
already happening.

The Department of Defense Commercial Mobile Device Implementation Plan [DoD
Implementation] includes plans to establish an enterprise Mobile Application Store
(MAS) capability that operates in conjunction with an MDM system, and Mobile
applications may be acquired and managed by each DoD Component. In particular,
“completed and approved mobile applications will be able to be downloaded on demand
from enterprise and/or DoD Component [mobile application store(s) (MASs)].”

d. Limited Resources

Mobile devices have limited resources compared to modern desktops and laptops in
terms of CPU processor performance, memory, storage, communication channel
bandwidth (which may also be unreliable), and battery power.

The limited resources (lower CPU processor performance, memory, storage, and
communication channel bandwidth) mean that in many cases, mobile applications must
today be specially developed to work on mobile devices. Many people use web browsers
on mobile devices, and there are many mobile web applications. Mobile web
applications, typically implemented using Javascript and HTML5, are typically more
portable across different types of mobile devices. However, there are significant

 F-16

limitations when using mobile web applications and other portable approaches. For
example:

 Memory management is much more difficult on today’s mobile devices, and
mobile application developers must often “spend a lot of time thinking about
memory management.” Automated garbage collectors work well if you have at
least six times as much memory as needed, but efficiency can greatly harmed if
there is less than four times as much memory. “iOS has formed a culture around
doing most things manually and trying to make the compiler do some of the easy
parts. Android has formed a culture around improving a garbage collector that
they try very hard not to use in practice. But either way, everybody spends a lot
of time thinking about memory management when they write mobile
applications. There’s just no substitute for thinking about memory.” [Crawford
2013]. Automated garbage collection is deprecated in OS X Mountain Lion
v10.8, and will be removed in a future version of OS X; Automatic Reference
Counting (ARC) is the recommended approach instead. ARC is supported in
Xcode 4.2 for OS X v10.6 and v10.7 (64-bit applications) and for iOS 4 and iOS
5 [Apple ARC].

 Mobile web applications do not have access to all the resources of a mobile
device that a platform-specific mobile app would have [Heath 2013].

It is difficult to counter covert channels on a mobile device. Mobile devices have
limited resources to devote to covert channel defenses, but adequate resources to
implement covert channels at significant bit rates. However, in practice, malicious
applications typically do not need to resort to covert channels to perform unauthorized
sharing of data. We include countering covert channels as a technical objective that
might be selected, but, in practice, many other channels are often available to attackers,
and countering those is necessary before covert channels are even relevant.

Mobile devices have limited electrical power, and since they often run on batteries,
the device will shut down when the power runs out. This limited power makes it more
difficult to simply add memory or CPU horsepower, since these additional facilities may
draw additional power. This limited electrical power can even form the basis of an
attack; an attacker can in some cases devise an application to drain battery power when
the user most needs the device. The power can be consumed by the display (and even
color matters), communication channels, and so on. [Murmuria] presents a general
methodology for collecting measurements and modelling power usage on smartphones,
and presents a power usage model. For example, in their tests they found that blue pixels
cause a higher rate of current discharge than green pixels (and green more than red).
NIST has performed a number of tests of Android applications, including their power
characteristics, though in their tests red consumed the most power [Rausnitz 2013].
Typical 4G implementations can drain power rapidly [Bartlett 2012].

F-17

Note that since mobile devices have limited electrical power and must often connect
to power to charge, users have a tendency to connect to power sources wherever they are
available (e.g., airports, kiosks, etc.). Many of these connectors are USB connectors,
which can also perform data transfers. One threat is that attackers may use these USB
connectors that users think are only for power as a means to attack the device. Some
products are available that only connect the USB power connectors, not the USB data
connectors, countering this threat. Another mitigation approach is for users to always
charge by connecting directly to wall AC power.

e. Sensors

Typical mobile devices include a large number of sensors and actuators that can
create additional risks. In particular, sensors can provide information about the user, user
activities, or user environment to those who should not receive this information.
Particularly in the DoD environment, care needs to be taken to ensure that these sensors
are controlled and managed. What’s more, many sensors are controlled solely by
software, or by hardware interlocks that can be worked around, instead of being a simple
physical mechanism that disables the sensor in a way that cannot be overridden (for a
discussion focusing on laptops, see [Soltani 2013]).

Most obviously, the microphone and camera create an excellent way to capture what
someone hears, says, sees, or does, especially when combined with GPS (to identify
location) and communication mechanisms (which allow transmission of that information
immediately or later). This would enable adversaries to know who is where and what the
United States and its allies are trying to do.

There are less obvious uses of these various sensors, however. For example:

 Acoustic cryptoanalysis uses audio information to break cryptographic
algorithms. One paper demonstrated using a mobile phone to acoustically
extract a full 4096-bit RSA decryption key from a laptop at a distance of 30cm,
within an hour [Genkin 2013]. The malicious application could be run on an
adversary’s phone, or could also be a Trojan horse running on the victim’s
phone. This could occur anywhere, even in an airport or coffee shop, and is not
an attack most people would even think about.

 Similarly, another paper showed that smartphone accelerometers can be used as
a high-bandwidth side channel. In particular, the accelerometer sensor could be
used by itself to determine the user “tap and gesture-based input as required to
unlock smartphones using a PIN/password or Android’s graphical password
pattern.” [Aviv 2012]

In many cases, these misuses of sensors could be implemented as a Trojan horse as
part of a larger authorized application. What’s more, if the data is not analyzed locally,

 F-18

and is instead sent elsewhere in raw form, it may be difficult to determine whether the
data is being exploited (and if so, how).

G-1

Appendix G. Additions since the 2013 SOAR

Additions in 2014

The version of the paper released in May 2014 extended the version of August 19,
2013. In particular, it added information specifically focused on mobile platforms (e.g.,
smartphones and tablets running on operating systems such as iOS and Android).
Appendix F discusses the mobile environment, and is wholly new in this version of the
paper.

Major changes made in the 2014 revision of the original document included various
incremental improvements, including those suggested by reviewer comments from the
Sponsors, the Software Engineering Institute (SEI) and the MITRE Corporation. In
particular, the set of technical objectives was expanded and slightly reorganized per
reviewer comments.19 Other clarifications were made in response to reviewer comments;
for example, we now make explicit that unless the paper says otherwise, tools and
techniques are automated (and not exclusively manual).

In the technical objectives (of section 4), we:

 Clarified that “permissions, privileges, and access control” included granting
resource access to another component that should not be allowed that access.
Excessive grants are a problem in any system, but mobile environments often
isolate applications from each other by default, and users typically depend on
this. This means that excessive grants can create vulnerabilities unexpected by
mobile system users.

 Modified the top-level category, “provide anti-tamper,” to also cover “ensure
transparency.” The issue of ensuring transparency is of special additional
concern in mobile environments; there are often very short time limits for the
analysis of mobile software, so tools that deliberately inhibit transparency can
make it extremely difficult to ascertain the risk of using third-party applications.

 Added countering excessive power consumption as a key potential technical
objective. Excessive power consumption can cause degradation of server

19 In particular, per MITRE comments we have added countering the use of insufficiently random values
(Common Weakness Enumeration (CWE)-330), countering improper certificate validation (CWE-295),
and countering excessive iteration (CWE-834). The matrix itself has also been modified to improve
CWE mapping, e.g., to map insufficient compartmentalization to CWE-653.

 G-2

performance, but in the mobile environment it can lead to complete denial of
service by the device.

We did not need to add a new technical objective to cover embedded malicious
logic such as Trojan horses (additional functionality not desired by user). However, it is
worth noting that in mobile devices this additional functionality can include misuse of
sensors and actuators beyond the functionality expected by the user. For example, a
mobile application might be granted access to a microphone and the network; that
application could then misuse these privileges to record and transmit sound nearby
without the user’s knowledge or consent.

A number of tool/technology types were added. Major additions (which resulted in
changes in section 5 and Appendix C) were:

 Inter-application flow analyzer. Since mobile devices isolate applications by
default, the flow of data between applications can be even more critical since it
is an important mechanism that attackers use to subvert mobile devices.

 Host application interface scanner. Application interfaces present an attack
surface, yet on mobile devices this attack surface is less obvious than on other
types of systems. These tools provide such information.

 Compare binary/bytecode to application permission manifest, permission

manifest analyzer, and execute and compare with application manifest. Android
applications include a static “manifest” of privileges that the application wishes
to use. Several tool/technology types have been created that specifically use and
analyze this information. There are some systems outside the mobility
environment that also support the static definitions of permissions for an
application (e.g., Secure-Enhanced Linux), but the widespread availability of
such data with the application itself makes these kinds of approaches especially
attractive for tool development.

 Obfuscated code detection. Mobile software is often updated rapidly, leading to
a need to rapidly evaluate such software as noted above. Obfuscation may be
used to counter reverse-engineering of critical or proprietary technology, but it
can also be used to counter or slow analysis by other assurance tools. Thus,
obfuscated code may create an increased risk of unintentionally vulnerable or
intentionally malicious code.

 Obfuscator. Mobile devices make it easy to provide software to capture and
analyze data, but adversaries would be able to exploit it if they could determine
how it works. There are uses for these in non-mobile environments, but in many
other situations there are often physical protections as well (e.g., the computer

G-3

may be in a locked protected room), while for a mobile device many physical
protections are impractical.

 Framework-based fuzzer. A framework-based fuzzer can be used in many
environments, but the rich fixed framework in a typical mobile environment
(e.g., Android and iOS) makes it easier to create a single framework-based
fuzzer that can be reapplied to a large number of applications.

 Automated monitored execution. Automated monitored execution can be
applied in both mobile and non-mobile settings. The limited time often
available to analyze third-party mobile applications, and the single fixed
framework for a given mobile device, makes automated monitored execution
especially attractive for analysis of third-party mobile applications. The paper
was later revised to name this automated detonation chamber.

 Forced path execution. Most dynamic analysis approaches have the
disadvantage that they only execute certain paths (the ones triggered by given
inputs). An alternate approach is to test by forcing an application to use other
paths, even if the input did not trigger it, to see if following that path is likely to
lead to other problems. This approach risks additional false positives, but it can
be done relatively quickly. This is especially relevant for evaluating mobile
applications, since in many cases organizations wish to evaluate mobile
applications quickly even at the cost of the loss of some precision.

 Man-in-the-middle attack tool. Mobile devices are almost always connecting
wirelessly, making man-in-the-middle attacks easier to perform, so tools focused
on detecting such vulnerabilities are even more useful.

 Track sensitive data. Mobile devices often include a great deal of sensitive data
(including personal data), yet because applications are supposed to be isolated
from each other, users tend to assume that sensitive data will not be leaked in an
unauthorized way. Yet these data can leak out anyway, through multiple
applications; tools designed specifically to look for this thus become more
compelling.

The discussion on gaps (in section 9) was extended to include gaps specific to
mobility. Other sections of this paper were also modified, e.g., to list the additional
people we interviewed and documents we cited.

Additions in 2016

This document was further extended in 2016. Key changes from the 2014 version
are described here.

 G-4

In the May 2014 version we noted that there was a lack of specific quantitative data
to support the hypothesis that higher software quality tends to produce more secure
software. At the time this was a plausible hypothesis that a number of experts believed to
be true. Some of the arguments for why this might be true are that:

1. Higher-quality software should have fewer defects, and security
vulnerabilities are a subset of software defects. If the percentage of security
vulnerabilities is similar in software that is higher quality in general, then
software that is higher quality in general would have fewer vulnerabilities.
This is not necessarily true; it could be that tools and techniques for
addressing generic quality defects would leave most security defects
unaddressed.

2. Higher-quality software tends to be simpler for tools and humans to analyze,
resulting in improved identification of vulnerabilities.

3. Tools designed to look for quality defects may also look for some of the
same properties that vulnerability-finding tools look for, and thus they really
are not distinct.

However, many seemingly reasonable hypotheses are false. We believed in 2014
that it was important to investigate this claim before recommending it. This question is
important, because if it is true, then it might be appropriate to first use tools to identify
quality problems, fix the problems they identify, and then use other tools for more
complex analysis. More evidence that supports this hypothesis has since been published.
In particular, SEI [Woody 2014] published in December 2014 a compendium of evidence
to support the claim that higher quality software tends to produce more secure software.

While more evidence would be welcome, we believe the preponderance of evidence
now is that improving the general quality of software tends to improve the security of the
software. This does not mean that using only generic quality tools is enough to develop
secure software. Instead, it means that using generic quality tools can be a valuable aid in
developing secure software.

We searched for new types of tools and techniques. Software assurance is not a
solved problem, and while most tool suppliers had refined their tools further, we were
disappointed that we did not find more new approaches. That said, we added three new
tool categories not in previous versions of the SOAR: “coverage-guided fuzz tester,”
“probe-based attacks with tracked flow,” and “track data and control flow.” These are
defined as:

 A coverage-guided fuzz tester is a fuzz tester that uses code coverage
information to determine new inputs to test.

G-5

 The track data and control flow tool/technique tracks data and control flows
from inputs and other data sources to data sinks, and reports when rules
(predefined or user defined) are triggered indicating a potential vulnerability.

 The probe-based attack with tracked flow tool/technique observes normal
behavior while tracking data and control flows within the program (possibly
through several tiers), sends probing inputs to determine patterns of behavior
that might indicate a potential vulnerability, and then based on these
patterns, performs simulated attacks to identify actual vulnerabilities.

All of these additional types of tools are hybrid approaches, which is interesting
because we had previously predicted that more tool types would be created as hybrids to
take advantage of the information available from both static and dynamic analysis. All of
these tool types have great promise for detecting vulnerabilities in applications. As for
the other types, we have estimated their effectiveness for various technical objectives in
Appendix E. Note that since we have less information on these newer types of tools,
their values in Appendix E are more subject to future change.

We added a new major heading, “Application,” to provide specific guidance on how
to apply this information and a wholly new section with tips on selecting technical
objectives for a system, as well as an expansion on how to select tools and techniques
given those technical objectives. We also updated the vignettes to match.

Other key changes include:

1. We renamed “automated monitored execution (limited time)” to “automated
detonation chamber (limited time)” because this is a more precise
description.

2. We renamed the technical objective “counter known vulnerabilities” to
“counter known unintentional-like vulnerabilities”; this means that the
known intentional-like vulnerabilities are uniquely separated into the
technical objective “counter intentional-"like"/malicious logic.” This
changed the entry for the tool type “traditional virus/ spyware scanner”
which is now more clearly allocated to the latter technical objective.

3. In the large table of Appendix E, we added a column to map to the OWASP
top 10 of 2013.

4. We briefly discussed other kinds of tools that are related but not the primary
focus of this paper. These include SwA correlation tools, as well as various
excluded tools and techniques (general-purpose software test tools and test
frameworks, combinatorial testing, and threat intelligence).

5. We compare our high-level tool grouping (static, dynamic, and hybrid) to
Gartner’s, since some people may be familiar with Gartner’s [Mello2015].

 G-6

Gartner uses the general term application security testing (AST), as well as
the term static AST (SAST), which is basically equivalent to our static group,
dynamic AST (DAST), which is basically equivalent to our dynamic group,
interactive AST (IAST), which we term as hybrid. They separately list
mobile AST, which we do not.

6. We updated the tables and other information related to mobile devices. In
particular, the latest version of Android has changes to its application
security model, which we discuss.

AA-1

Acronyms

AC alternating current
ACM Association for Computing Machinery
ACSAC Annual Computer Security Applications Conference
ADT Action for Technological Development
AJAX Asynchronous JavaScript and XML
AOSP Android Open Source Platform
ARC Automatic Reference Counting
ASACoE Application Software Assurance Center of Excellence
ASCAD Adelard Safety Case Development
ASCE (Adelard) Assurance and Safety Case Environment20
ASIC Application Specific Integrated Circuits
ASLR Address Space Layout Randomization
ASP Active Server Pages
AT&L Acquisition, Technology, and Logistics

BAH Booz Allen Hamilton
BAT Binary Analysis Tool
BSIMM Building Security In Maturity Model
BYOD Bring Your Own Device

C&A Certification and Accreditation
CA Certificate Authority
CAPEC Common Attack Pattern Enumeration and Classification
CAS Center for Assured Software (part of NSA)
CCEVS Common Criteria Evaluation and Validation Scheme
CERT Not an acronym, but formerly Computer Emergency Readiness Team
CFTT Computer Forensics Tools Testing
CIL Common Intermediate Language
CIO Chief Information Office(r)
CLI Common Language Infrastructure
CLM Component Lifecycle Management
CM Configuration Management
CMU Carnegie Mellon University
COBOL COmmon Business-Oriented Language
COFF Common Object File Format
COP Community of Practice
COTS Commercial Off-The-Shelf

20 This acronym is defined at http://www.adelard.com/asce/general/graphArgumentation.html.

 AA-2

CPI Critical Program Information
CPU Central Processing Unit
CSIAC Cyber Security and Information Systems Information Analysis Center
CTO Chief Technical Officer
CVE Common Vulnerability Enumeration
CVS Concurrent Versions System
CWE Common Weakness Enumeration

DACS Data and Analysis Center for Software, consolidated into CSIAC
DAG Defense Acquisition Guidebook
DARPA Defense Advanced Research Projects Agency
DASD(SE) Deputy Assistant Secretary of Defense (Systems Engineering)
DDC Diverse Double-Compiling
DFARS DoD FAR Supplement
DHS Department of Homeland Security
DISA (DoD) Defense Information Systems Agency
DNS Domain Name System
DoD Department of Defense
DoDI Department of Defense Instruction
DoS Denial of Service

ELF Executable and Linkable Format (formerly Extensible Linking Format)
ENISA European Network and Information Security Agency
EWA Electronic Warfare Associates, Inc.

FAR Federal Acquisition Regulation
FPGA Field Programmable Gate Array
FTP File Transmission Protocol
FW FireWall

GAO Government Accountability Office
GMS Google Mobile Services
GNU GNU’s Not Unix
GOTS Government Off-The-Shelf
GPU Graphics Processing Unit
GRC Gibson Research Corporation
GSN Goal Structuring Notation

HCSS High Confidence Software & Systems
HA High Assurance
HKSAR Hong Kong Special Administrative Region
HP Hewlett-Packard
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol

AA-3

IA Information Assurance
IATAC Information Assurance TAC, consolidated into CSIAC
IAVA Information Assurance Vulnerability Alert
IBM International Business Machines
IDA Institute for Defense Analyses or part of name of IDA Pro
IDE Integrated Development Environment
IDS Intrusion Detection System
IEEE Institute of Electrical and Electronics Engineers
IIT Information and Infrastructure Technologies (part of EWA)
IP Intellectual Property or Internet Protocol
IPS Intrusion Prevention System

JAR Java ARchive (format)
JVM Java Virtual Machine

K one-thousand

LTE Long-Term Evolution

MAM Mobile Application Management
MAS Mobile Application Store
MDM Mobile Device Management
MSDN Microsoft Developer Network (MSDN)

NDAA National Defense Authorization Act
NDI Non-developmental item
NDIA National Defense Industrial Association
NIAP National Information Assurance Partnership
NIST National Institute of Standards and Technology
NSA National Security Agency
NUL Null character
NVD National Vulnerability Database

O-TTPF Open Trusted Technology Provider Framework
OASD(HA) Office of the Assistant Secretary of Defense for Health Affairs
OCIL Open Checklist Interactive Language
OISF Open Information Security Foundation
OS Operating System
OSD Office of the Secretary of Defense
OSS Open Source Software (note that nearly all OSS is COTS)
OTS Off-the-shelf
OUSD(AT&L)Office of the Under Secretary of Defense for Acquisition, Technology,

and Logistics
OVAL Open Vulnerability and Assessment Language
OWASP Open Web Application Security Project

 AA-4

PDF Portable Document Format
PE (Microsoft) Portable Executable
PHP PHP: Hypertext Preprocessor (formerly Personal Home Page)
PI Principle Investigator
PL/1 Programming Language/1
PL/SQL Procedural Language/Structured Query Language
PM Program Manager
PMD (Not an acronym)
PMO Program Management Office
POSIX Portable Operating System Interface
PPP Program Protection Plan

RSA (Ron) Rivest – (Adi) Shamir – (Leonard) Adleman
RTOS Real-Time Operating System

SaaS Software-as-a-Service
SAMATE Software Assurance Metrics And Tool Evaluation
SANS System Administration, Networking, and Security
SAST Static Application Security Testing
SATE Static Analysis Tool Exposition
SBIR Small Business Innovation Research
SCAP Security Content Automation Protocol
SCRM Supply Chain Risk Management
SCWA Source Code Weakness Analysis
SDLC Software Development Lifecycle
SE Systems Engineering
SEI Software Engineering Institute
SIEM Security Information and Event Management
SME Subject Matter Expert
SOAR State-of-the-Art Resource(s)
SQL Structured Query Language
SRG Security Requirements Guide
SSH Secure Shell, sometimes known as Secure Socket Shell
SSL Secure Sockets Layer
STIG Security Technical Implementation Guide
STONESOUP Securely Taking On New Executable Software of Uncertain Provenance
STRIDE Spoofing, Tampering, Repudiation, Information disclosure, DoS,

Elevation of privilege
SwA Software Assurance

TAC Technology Analysis Center
TCB Trusted Computing Base
TCP Transmission Control Protocol
TCP/IP Internet protocol suite, including TCP, UDP, IP, and DNS
TechSgt Technical Sergeant
TFS (Microsoft) Team Foundation Server

AA-5

TLS Transport Layer Security
TMA TRICARE Management Activity
TOE Target of Evaluation (the software being evaluated)
TSN Trusted Systems and Networks

UDP User Datagram Protocol
UK United Kingdom
URL Uniform Resource Locator
U.S. United States
USB Universal Serial Bus

VB6 Visual Basic 6
VBNET Visual Basic for .NET
VHDL VHSIC Hardware Description Language
VHSIC Very-High-Speed Integrated Circuit
VSS Visual SourceSafe

WASC Web Application Security Consortium

XCCDF eXensible Configuration Checklist Description Format
XML eXtensible Markup Language

All trademarks are owned by their respective trademark holders.

BB-1

Bibliography

[Agematsu 2012] Agematsu, Harunobu, Junya Kani, Kohei Nasaka, Masakatsu
Nishigaki; Hideaki Kawabata, Takamasa Isohara, and Keisuke Takemori. “A Proposal to
Realize the Provision of Secure Android Applications.” Sixth International Conference

on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS). July 4-6,
2012. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6296936.

[Alazan 2012] Alazab, Moutaz, Veelsha Moonsamy, Lynn Batten, Ronghua Tian, and
Patrik Lantz. “Analysis of Malicious and Benign Android Applications.” 2012 32nd

International Conference on Distributed Computing Systems Workshops (ICDCSW).
June 2012. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6258212.

[Amadeo 2013] Amadeo, Ron. “Google’s iron grip on Android: Controlling open source
by any means necessary.” Ars Technica. October 2013.
http://arstechnica.com/gadgets/2013/10/googles-iron-grip-on-android-controlling-open-
source-by-any-means-necessary/.

[Android 2013] Android.com. “Security Enhancements in Android 4.4.” 2013.
http://source.android.com/devices/tech/security/enhancements44.html.

[Android Fundamentals 2013] Application Fundamentals. 2013.
https://developer.android.com/guide/components/fundamentals.html.

[Android intents] “Intents and Intent Filters”. API Guide.
http://developer.android.com/guide/components/intents-filters.html.

[Apple ARC 2013] Apple Automatic Reference Counting (ARC). “Transitioning to ARC
Release Notes.” August 2013,
https://developer.apple.com/library/mac/releasenotes/ObjectiveC/RN-
TransitioningToARC/Introduction/Introduction.html.

[Apple 2012] Apple Inc, iOS Security. May 2012.
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf.

[AT&T & McAfee 2011] AT&T and McAfee. Keep Your Enemies Closer: Three Steps

to Bring Mobile Devices into Your Security Infrastructure. 2011.
http://www.mcafee.com/us/resources/white-papers/wp-keep-your-enemies-closer.pdf.

[Aviv 2012] Aviv, Adam J., Benjamin Sapp, Matt Blaze and Jonathan M. Smith.
“Practicality of Accelerometer Side Channels on Smartphones.” Annual Computer

Security Applications Conference (ACSAC). February 2012.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6296936
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6258212
http://arstechnica.com/gadgets/2013/10/googles-iron-grip-on-android-controlling-open-source-by-any-means-necessary/
http://arstechnica.com/gadgets/2013/10/googles-iron-grip-on-android-controlling-open-source-by-any-means-necessary/
http://source.android.com/devices/tech/security/enhancements44.html
https://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/intents-filters.html
https://developer.apple.com/library/mac/releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html
https://developer.apple.com/library/mac/releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
http://www.mcafee.com/us/resources/white-papers/wp-keep-your-enemies-closer.pdf

 BB-2

http://www.acsac.org/2012/openconf/modules/request.php?module=oc_program&action
=view.php&a=&id=56&type=4&OPENCONF=75799905b2bb79c800ddf7ade3caad00.

[BAH 2009] Booz Allen Hamilton. Software Security Assessment Tools Review. March
2, 2009. http://samate.nist.gov/docs/NAVSEA-Tools-Paper-2009-03-02.pdf.

[Barmier] Barmier, Tal. Mobile Test Automation Trends & Tools Evaluation Criteria.
http://d242m5chux1g9j.cloudfront.net/Mobile%20Test%20Automation_Overview%20&
%20Tools%20Evaluation.pdf.

[Bartlett 2012] Bartlett, Mitch. “Why Does 4G Really Drain Your Battery?” PhoneTipz.
January 2012. http://phonetipz.com/why-does-4g-really-drain-your-battery.

[Black 2008] Black, Paul E., Elizabeth Fong, Vadim Okun, and Romain Gaucher.
Software Assurance Tools: Web Application Security Scanner Functional Specification.
Version 1.0. January 2008. http://samate.nist.gov/docs/webapp_scanner_spec_sp500-
269.pdf.

[Böck] Böck, Hanno. “Part 2: Find more Bugs with Address Sanitizer”. The Fuzzing

Project (Tutorial). https://fuzzing-project.org/tutorial2.html. Retrieved March 7, 2016.

[Bradley 2013] Bradley, Tony. “Android Dominates Market Share, But Apple Makes All
The Money.” Forbes. November 2013.
http://www.forbes.com/sites/tonybradley/2013/11/15/android-dominates-market-share-
but-apple-makes-all-the-money/.

[Breeden 2013] Breeden II, John. “3 reasons iOS 7 could be suitable for government.”
GCN (sic). November 2013. http://digital.gcn.com/?iid=83251#folio=10.

[Bright 2014] Bright, Peter. “Neither Microsoft, Nokia, nor anyone else should fork
Android. It’s unforkable.” Ars Technica. February 8, 2014.
http://arstechnica.com/information-technology/2014/02/neither-microsoft-nokia-nor-
anyone-else-should-fork-android-its-unforkable/

[Bulgeisi 2013] Bugliesi, Michele, Stefano Calzavara, and Alvise Spanò. “Lintent:
towards security type-checking of Android applications.” Formal Techniques for

Distributed Systems, Lecture Notes in Computer Science Volume 7892. pp 289-304.
2013. http://www.dais.unive.it/~calzavara/papers/forte13.pdf.

[Butler] Butler, Ricky. “What is Formal Methods?” (sic). NASA Langley Formal

Methods Site. http://shemesh.larc.nasa.gov/fm/fm-what.html.

[CAS 2011] National Security Agency (NSA) Center for Assured Software (CAS). CAS

Static Analysis Tool Study – Methodology. 2011.
http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf.

[CAS 2012] National Security Agency (NSA) Center for Assured Software (CAS), CAS

Static Analysis Tool Study – Methodology. 2012.

http://www.acsac.org/2012/openconf/modules/request.php?module=oc_program&action=view.php&a=&id=56&type=4&OPENCONF=75799905b2bb79c800ddf7ade3caad00
http://www.acsac.org/2012/openconf/modules/request.php?module=oc_program&action=view.php&a=&id=56&type=4&OPENCONF=75799905b2bb79c800ddf7ade3caad00
http://samate.nist.gov/docs/NAVSEA-Tools-Paper-2009-03-02.pdf
http://d242m5chux1g9j.cloudfront.net/Mobile%20Test%20Automation_Overview%20&%20Tools%20Evaluation.pdf
http://d242m5chux1g9j.cloudfront.net/Mobile%20Test%20Automation_Overview%20&%20Tools%20Evaluation.pdf
http://phonetipz.com/why-does-4g-really-drain-your-battery
http://samate.nist.gov/docs/webapp_scanner_spec_sp500-269.pdf
http://samate.nist.gov/docs/webapp_scanner_spec_sp500-269.pdf
https://fuzzing-project.org/tutorial2.html
http://www.forbes.com/sites/tonybradley/2013/11/15/android-dominates-market-share-but-apple-makes-all-the-money/
http://www.forbes.com/sites/tonybradley/2013/11/15/android-dominates-market-share-but-apple-makes-all-the-money/
http://digital.gcn.com/?iid=83251#folio=10
http://arstechnica.com/information-technology/2014/02/neither-microsoft-nokia-nor-anyone-else-should-fork-android-its-unforkable/
http://arstechnica.com/information-technology/2014/02/neither-microsoft-nokia-nor-anyone-else-should-fork-android-its-unforkable/
http://www.dais.unive.it/~calzavara/papers/forte13.pdf
http://shemesh.larc.nasa.gov/fm/fm-what.html
http://samate.nist.gov/docs/CAS_2011_SA_Tool_Method.pdf

BB-3

http://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20
Methodology.pdf.

[CAS 10x10 2013] National Security Agency (NSA) Center for Assured Software (CAS).
10x10 Project Report. April 2013.

[CAS Survey 2013] National Security Agency (NSA) Center for Assured Software
(CAS). Mobile Software Assurance Analysis Tool Survey. April 2013.

[CAS Vuln 2013] National Security Agency (NSA) Center for Assured Software (CAS).
Android A to C Application Vulnerabilities. April 2013.

[Cardinal 2013] David Cardinal. “Is Play Google’s new secret weapon against Android
fragmentation?” May 16, 2013. Extreme Tech.
http://www.extremetech.com/gaming/156048-is-play-googles-new-secret-weapon-
against-android-fragmentation.

[Carrier 2003] Carrier, Brian. “Defining Digital Forensic Examination and Analysis
Tools Using Abstraction Layers.” International Journal of Digital Evidence. Winter
2003.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.9813&rep=rep1&type=pdf.

[Chen 2012] Chen, Shay. “The 2012 Web Application Scanner Benchmark.” Security

Tools Benchmarking. July 2012. http://sectooladdict.blogspot.com/2012/07/2012-web-
application-scanner-benchmark.html.

[Chen 2014] Chen, Shay. “WAVSEP Web Application Scanner Benchmark 2014.”
Security Tools Benchmarking. February 5, 2014.
http://sectooladdict.blogspot.com/2014/02/wavsep-web-application-scanner.html

[Chin 2011] Chin, Erika, Adrienne Porter Felt, Kate Greenwood, and David Wagner.
“Analyzing Inter-Application Communication in Android.” MobiSys ’11. June 28–July
1, 2011. http://www.cs.berkeley.edu/~afelt/intentsecurity-mobisys.pdf.

[Chmielewski 2013] Chmielewski, Clift, Fonrobert, and Ostwald. “Find and Fix
Vulnerabilities Before Your Application Ships.” MSDN Magazine. Microsoft. 2013.
http://msdn.microsoft.com/en-us/magazine/cc163312.aspx.

[Cigital] Cigital. Securing Mobile Applications.
http://www.cigital.com/resources/downloads/?dl=SecuringMobileApps.

[CIO Council 2013] Federal CIO Council. “The Potential of Mobile Apps.” May 2013.
https://cio.gov/the-potential-of-mobile-apps/.

[CITO 2012] CITO Research. “The Lessons of Google Play for API Designers and
Enterprise Architects.” 2012. http://www.citoresearch.com/app-dev/lessons-google-play-
api-designers-and-enterprise-architects#sthash.IbQwiJ99.dpuf.

http://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
http://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
http://www.extremetech.com/author/dcardinal
http://www.extremetech.com/gaming/156048-is-play-googles-new-secret-weapon-against-android-fragmentation
http://www.extremetech.com/gaming/156048-is-play-googles-new-secret-weapon-against-android-fragmentation
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.9813&rep=rep1&type=pdf
http://sectooladdict.blogspot.com/2012/07/2012-web-application-scanner-benchmark.html
http://sectooladdict.blogspot.com/2012/07/2012-web-application-scanner-benchmark.html
http://sectooladdict.blogspot.com/2014/02/wavsep-web-application-scanner.html
http://www.cs.berkeley.edu/~afelt/intentsecurity-mobisys.pdf
http://msdn.microsoft.com/en-us/magazine/cc163312.aspx
http://www.cigital.com/resources/downloads/?dl=SecuringMobileApps
https://cio.gov/the-potential-of-mobile-apps/
http://www.citoresearch.com/app-dev/lessons-google-play-api-designers-and-enterprise-architects#sthash.IbQwiJ99.dpuf
http://www.citoresearch.com/app-dev/lessons-google-play-api-designers-and-enterprise-architects#sthash.IbQwiJ99.dpuf

 BB-4

[Congress 2013] U.S. Congress, Jan. 2, 2013, National Defense Authorization Act
(NDAA) for fiscal year 2013. http://www.gpo.gov/fdsys/pkg/PLAW-
112publ239/pdf/PLAW-112publ239.pdf

[CNSS2015] Committee on National Security Systems (CNSS). April 6, 2015. National

Information Assurance Glossary. CNSS Instruction No. 4009.

[Crawford 2013] Crawford, Drew. “Why mobile web apps are slow.” July 2013.
http://sealedabstract.com/rants/why-mobile-web-apps-are-slow/.

[Chun 2012] Chun, Woo-Sung and Dea-Woo Park. “Malicious Code Hiding Android
Apps Distribution and Hacking Attacks and Incident Analysis.” 2012 8th International
Conference on Information Science and Digital Content Technology (ICIDT) Volume 3.
June 26-28, 2012. Pp. 686–689.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=626936[DAG]
Department of Defense (DoD). Defense Acquisition Guidebook (DAG).
https://dag.dau.mil/Pages/Default.aspx.

[DASD(SE) 2011] DASD(SE). Program Protection Plan Outline and Guidance. Version

1.0. July 2011. http://www.acq.osd.mil/se/docs/PPP-Outline-and-Guidance-v1-
July2011.pdf

[DASD(SE) 2014] DASD(SE). Software Assurance Countermeasures in Program

Protection Planning Protection. March 2014. http://www.acq.osd.mil/se/docs/SwA-CM-
in-PPP.pdf

[Dai Zovi] Dai Zovi, Dino A. “Apple iOS 4 Security Evaluation.”
http://www.trailofbits.com/resources/ios4_security_evaluation_paper.pdf

[DARPA 2013] Michel, Doran. “Transformative Apps.” 2013.
http://www.darpa.mil/Our_Work/I2O/Programs/Transformative_Apps.aspx.

[Datta 2012] Datta, Soumya Kanti, Christian Bonnet, Navid Nikaein. “Android Power
Management: Current and Future Trends.” June 2012.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6311253&queryText%3D
Android+Power+Management%3A+Current+and+Future+Trends.

[DHS Acq 2012] DHS, Software Assurance in Acquisition and Contracting Language.
May 18, 2012. https://buildsecurityin.us-
cert.gov/sites/default/files/publications/AcquisitionAndContractLanguage_PocketGuideV
1%202_05182012_PostOnline.pdf.

[Dignan 2013] Dignan, Larry. “Android, Apple iOS flip consumer, corporate market
share.” February 2013. http://www.zdnet.com/android-apple-ios-flip-consumer-
corporate-market-share-7000011255.

http://www.gpo.gov/fdsys/pkg/PLAW-112publ239/pdf/PLAW-112publ239.pdf
http://www.gpo.gov/fdsys/pkg/PLAW-112publ239/pdf/PLAW-112publ239.pdf
http://sealedabstract.com/rants/why-mobile-web-apps-are-slow/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=626936
https://dag.dau.mil/Pages/Default.aspx
http://www.acq.osd.mil/se/docs/PPP-Outline-and-Guidance-v1-July2011.pdf
http://www.acq.osd.mil/se/docs/PPP-Outline-and-Guidance-v1-July2011.pdf
http://www.acq.osd.mil/se/docs/SwA-CM-in-PPP.pdf
http://www.acq.osd.mil/se/docs/SwA-CM-in-PPP.pdf
http://www.trailofbits.com/resources/ios4_security_evaluation_paper.pdf
http://www.darpa.mil/Our_Work/I2O/Programs/Transformative_Apps.aspx
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6311253&queryText%3DAndroid+Power+Management%3A+Current+and+Future+Trends
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6311253&queryText%3DAndroid+Power+Management%3A+Current+and+Future+Trends
https://buildsecurityin.us-cert.gov/sites/default/files/publications/AcquisitionAndContractLanguage_PocketGuideV1%202_05182012_PostOnline.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/publications/AcquisitionAndContractLanguage_PocketGuideV1%202_05182012_PostOnline.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/publications/AcquisitionAndContractLanguage_PocketGuideV1%202_05182012_PostOnline.pdf
http://www.zdnet.com/android-apple-ios-flip-consumer-corporate-market-share-7000011255
http://www.zdnet.com/android-apple-ios-flip-consumer-corporate-market-share-7000011255

BB-5

[DHS 2013] Roll Call Release, “Threats to Mobile Devices Using the Android Operating
System.” July 2013. http://www.fiercemobilegovernment.com/story/dhs-fbi-warn-
android-malware-threat/2013-08-28#ixzz2dINgDwaC.

[DISA STIG 2013] DISA STIG MDM. “Mobile Device Management (MDM) Security
Requirements Guide (SRG).” January 2013. http://iase.disa.mil/stigs/a-z.html.

[DISA] DoD Mobility PMO. “DISA Mobility program.”
http://www.disa.mil/Services/Enterprise-Services/Mobility.

[Dr. Dobbs 2007] “SIEM: A Market Snapshot.” February 2007.
http://www.drdobbs.com/siem-a-market-snapshot/197002909.

[DoD 2009] DoD. October 16, 2009. Clarifying Guidance Regarding Open Source
Software (OSS). http://dodcio.defense.gov/Portals/0/Documents/FOSS/2009OSS.pdf

[DoD CIO] Department of Defense (DoD) Chief Information Officer (CIO).
“Department of Defense Commercial Mobile Device Implementation Plan.” February
2013. http://www.defense.gov/news/dodcMdimplementationplan.pdf.

[DoD CIO 2012] Department of Defense (DoD) Chief Information Officer (CIO).
“Department of Defense Mobile Device Strategy Version 2.0.” May 2012.
http://www.defense.gov/news/dodmobilitystrategy.pdf.

[DoDI 5000.02] DoD. Operation of the Defense Acquisition System. DoD Instruction
5000.02. January 7, 2015. http://www.dtic.mil/whs/directives/corres/pdf/500002p.pdf.

[DoDI 5200.44] DoD. November 5, 2012. Protection of Mission Critical Functions to

Achieve Trusted Systems and Networks (TSN). DoD Instruction 5200.44.
http://www.dtic.mil/whs/directives/corres/pdf/520044p.pdf.

[DoDI 8500.01] DoD. March 14, 2014. Cybersecurity. DoD Instruction 8500.01.
http://www.dtic.mil/whs/directives/corres/pdf/850001_2014.pdf

[Dynodroid 2013] Dynodroid project. 2013. “Dynodroid: Automated Testing of
Smartphone Apps.” http://pag.gatech.edu/dynodroid and
http://www.cc.gatech.edu/~naik/dynodroid.html.

[eEye] eEye Digital Security. “Simplifying the Challenges of Mobile Device Security”.
http://resources.idgenterprise.com/original/AST-
0059330_eEye_Mobile_Security_White_Paper.pdf.

[eEye Digital Security] eEye Digital Security. “Best Practices for Securing Remote and
Mobile Devices.” http://www.eeye.com/eEyeDigitalSecurity/media/White-Papers/Best-
Practices-for-Securing-Remote-and-Mobile-Devices-WP.pdf?ext=.pdf.

http://www.fiercemobilegovernment.com/story/dhs-fbi-warn-android-malware-threat/2013-08-28#ixzz2dINgDwaC
http://www.fiercemobilegovernment.com/story/dhs-fbi-warn-android-malware-threat/2013-08-28#ixzz2dINgDwaC
http://iase.disa.mil/stigs/a-z.html
http://www.disa.mil/Services/Enterprise-Services/Mobility
http://www.drdobbs.com/siem-a-market-snapshot/197002909
http://dodcio.defense.gov/Portals/0/Documents/FOSS/2009OSS.pdf
http://www.defense.gov/news/dodcMdimplementationplan.pdf
http://www.defense.gov/news/dodmobilitystrategy.pdf
http://www.dtic.mil/whs/directives/corres/pdf/500002p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/520044p.pdf
http://pag.gatech.edu/dynodroid
http://www.cc.gatech.edu/~naik/dynodroid.html
http://resources.idgenterprise.com/original/AST-%200059330_eEye_Mobile_Security_White_Paper.pdf
http://resources.idgenterprise.com/original/AST-%200059330_eEye_Mobile_Security_White_Paper.pdf
http://www.eeye.com/eEyeDigitalSecurity/media/White-Papers/Best-Practices-for-Securing-Remote-and-Mobile-Devices-WP.pdf?ext=.pdf
http://www.eeye.com/eEyeDigitalSecurity/media/White-Papers/Best-Practices-for-Securing-Remote-and-Mobile-Devices-WP.pdf?ext=.pdf

 BB-6

[Egele] Egele, Manuel, Christopher Kruegel, Engin Kirda, Giovanni Vigna. “PiOS:
Detecting Privacy Leaks in iOS Applications.”
http://www.seclab.tuwien.ac.at/papers/egele-ndss11.pdf.

[Egners 2012] Egners, Andre, Ulrike Meyer, Bjorn Marschollek. “Messing with
Android’s Permission Model.” 2012.
http://www.computer.org/csdl/proceedings/trustcom/2012/4745/00/4745a505-abs.html.

[ENISA] European Union Agency for Network and Information Security (ENISA).
Smartphone security. http://www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-
applications/smartphone-security-1.

[Emanuelsson 2008] Emanuelsson, PÄar, and Ulf Nilsson. “A Comparative Study of
Industrial Static Analysis Tools (Extended Version).” January 2008. http://liu.diva-
portal.org/smash/get/diva2:330560/FULLTEXT01.

[Enck 2010] Enck, William, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. “TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones.” 2010.
http://appanalysis.org/tdroid10.pdf.

[Enck 2011] Enck, William, “Defending Users Against Smartphone Apps: Techniques
and Future Directions.” Proceedings of the 7th international conference on Information

Systems Security (ICISS 2011). 2011. http://www.enck.org/pubs/enck-iciss11.pdf and
http://dl.acm.org/citation.cfm?id=2178076.

[Enck 2012] Enck, William. “Analysis Techniques for Mobile Operating System
Security.” April 2012. https://etda.libraries.psu.edu/paper/11817/6600.

[Ernst & Young, 2012] Ernst and Young. “Mobile Device Security: Understanding
Vulnerabilities and Managing Risks.” January 2012.
http://www.ey.com/Publication/vwLUAssets/Mobile_Device_Security/$FILE/Mobile-
security-devices_AU1070.pdf.

[Erturk 2012] Erturk, Emre. “A Case Study in Open Source Software Security and
Privacy: Android Adware.” June 2012.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6280226&queryText%3D
A+Case+Study+in+Open+Source+Software+Security+and+Privacy%3A+Android+Adw
are.

[Fed CIO Council 2013] Federal CIO Council. “Adoption of Commercial Mobile
Applications within the Federal Government Digital Government Strategy Milestone
5.4.” May 2013. https://cio.gov/wp-content/uploads/downloads/2013/05/Commercial-
Mobile-Application-Adoption-DGS-Milestone-5.4.pdf.

http://www.seclab.tuwien.ac.at/papers/egele-ndss11.pdf
http://www.computer.org/csdl/proceedings/trustcom/2012/4745/00/4745a505-abs.html
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-applications/smartphone-security-1
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/critical-applications/smartphone-security-1
http://liu.diva-portal.org/smash/get/diva2:330560/FULLTEXT01
http://liu.diva-portal.org/smash/get/diva2:330560/FULLTEXT01
http://appanalysis.org/tdroid10.pdf
http://www.enck.org/pubs/enck-iciss11.pdf
http://dl.acm.org/citation.cfm?id=2178076
https://etda.libraries.psu.edu/paper/11817/6600
http://www.ey.com/Publication/vwLUAssets/Mobile_Device_Security/$FILE/Mobile-security-devices_AU1070.pdf
http://www.ey.com/Publication/vwLUAssets/Mobile_Device_Security/$FILE/Mobile-security-devices_AU1070.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6280226&queryText%3DA+Case+Study+in+Open+Source+Software+Security+and+Privacy%3A+Android+Adware
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6280226&queryText%3DA+Case+Study+in+Open+Source+Software+Security+and+Privacy%3A+Android+Adware
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6280226&queryText%3DA+Case+Study+in+Open+Source+Software+Security+and+Privacy%3A+Android+Adware
https://cio.gov/wp-content/uploads/downloads/2013/05/Commercial-Mobile-Application-Adoption-DGS-Milestone-5.4.pdf
https://cio.gov/wp-content/uploads/downloads/2013/05/Commercial-Mobile-Application-Adoption-DGS-Milestone-5.4.pdf

BB-7

[Fed CIO Mobile Security 2013] Federal CIO Council. “Government Mobile and
Wireless Security Baseline. May 2013. https://cio.gov/wp-
content/uploads/downloads/2013/05/Federal-Mobile-Security-Baseline.pdf.

[Fed CIO Mobile 2013] Federal CIO Council. “Mobile Computing Decision
Framework.” May 2013. https://cio.gov/wp-
content/uploads/downloads/2013/05/Mobile-Security-Decision-Framework.pdf.

[Fed CIO Arch 2013] Federal CIO Council. “Mobile Security Reference Architecture.”
May 2013. https://cio.gov/wp-content/uploads/downloads/2013/05/Mobile-Security-
Reference-Architecture.pdf.

[Fed CIO Use Case 2013] Federal CIO Council. “Federal Mobile Computing Security
Baselines: Moderate Federal Employee Use Case.” May 2013. https://cio.gov/wp-
content/uploads/downloads/2013/05/Federal-Mobile-Security-Baseline-Appendix-A.xlsx.

[Felt 2011] Felt, Adrienne Porter, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. October 2011. “Android Permissions Demystified,”
http://www.cs.berkeley.edu/~afelt/Android_permissions.pdf.

[GAO-12-757] GAO. “Better Implementation of Controls for Mobile Devices Should Be
Encouraged.” September 2012. http://www.gao.gov/assets/650/648519.pdf.

[Gartner 2013] Gartner. “Gartner Says Smartphone Sales Accounted for 55 Percent of
Overall Mobile Phone Sales in Third Quarter of 2013.” November 2013.
https://www.gartner.com/newsroom/id/2623415.

[Gartner2015] Gartner. “Gartner Says Emerging Markets Drove Worldwide Smartphone
Sales to 15.5 Percent Growth in Third Quarter of 2015.” November 18, 2015.
http://www.gartner.com/newsroom/id/3169417

[Genkin 2013] Genkin, Daniel, Adi Shamir, and Eran Tromer. RSA Key Extraction via
Low-Bandwidth Acoustic Cryptanalysis. 2013. http://www.cs.tau.ac.il/~tromer/acoustic/.

[GMU 2012] Schulte, Brian, Haris Andrianakis, Kun Sun, and Angelos Stavrou.
“NetGator: Malware Detection Using Program Interactive Challenges.”
http://cs.gmu.edu/~astavrou/research/Netgator_DIMVA_2012.pdf.

[Goertzel 2007] Goertzel, Karen Mercedes, et al. Software Security Assurance: A State-
of-the-Art Report (SOAR). June 2007. http://iac.dtic.mil/csiac/download/security.pdf.

[Gold 2012] Gold, Steve. “Android: A Secure Future at Last?” March 2012.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6179102&queryText%3D
Android%3A+A+Secure+Future+at+Last%3F.

[Good 2014] Good Technologies. 2014. (Good) Mobility Index Report Q2 2014.
https://media.good.com/documents/rpt-mobility-index-q2-2014.pdf

https://cio.gov/wp-content/uploads/downloads/2013/05/Federal-Mobile-Security-Baseline.pdf
https://cio.gov/wp-content/uploads/downloads/2013/05/Federal-Mobile-Security-Baseline.pdf
https://cio.gov/wp-content/uploads/downloads/2013/05/Mobile-Security-Decision-Framework.pdf
https://cio.gov/wp-content/uploads/downloads/2013/05/Mobile-Security-Decision-Framework.pdf
https://cio.gov/wp-content/uploads/downloads/2013/05/Mobile-Security-Reference-Architecture.pdf
https://cio.gov/wp-content/uploads/downloads/2013/05/Mobile-Security-Reference-Architecture.pdf
https://cio.gov/wp-content/uploads/downloads/2013/05/Federal-Mobile-Security-Baseline-Appendix-A.xlsx
https://cio.gov/wp-content/uploads/downloads/2013/05/Federal-Mobile-Security-Baseline-Appendix-A.xlsx
http://www.cs.berkeley.edu/~afelt/Android_permissions.pdf
http://www.gao.gov/assets/650/648519.pdf
https://www.gartner.com/newsroom/id/2623415
http://www.gartner.com/newsroom/id/3169417
http://www.cs.tau.ac.il/~tromer/acoustic/
http://cs.gmu.edu/~astavrou/research/Netgator_DIMVA_2012.pdf
http://iac.dtic.mil/csiac/download/security.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6179102&queryText%3DAndroid%3A+A+Secure+Future+at+Last%3F
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6179102&queryText%3DAndroid%3A+A+Secure+Future+at+Last%3F
https://media.good.com/documents/rpt-mobility-index-q2-2014.pdf

 BB-8

[Good 2015] Good Technologies. 2015. (Good) Mobility Index Report Q2 2015.
http://venturebeat.com/2015/08/11/ios-slips-to-62-enterprise-share-in-q2-2015-android-
hits-32-and-windows-stays-flat-at-4/

[Google Commerce 2013] Google Commerce - Android Developer Blog, “With Google
Play services 4.0, US Android developers can now try out Google Wallet Instant Buy
API.” October 2013. http://googlecommerce.blogspot.com/2013/10/with-google-play-
services-40-us-android.html.

[Google2016] “Requesting Permissions at Run Time”. Developer.android.com. Retrieved
2016-04-25. http://developer.android.com/training/permissions/requesting.html

[Govt Biz Council] Government Business Council. “Mobile Security: Efforts to Secure
Federal Devices.”
http://cdn.govexec.com/interstitial.html?rf=http%3A%2F%2Fwww.govexec.com%2Fgbc
%2Fmobile-security-efforts-secure-federal-devices%2F41004%2F.

[Greenberg, 2013] Greenberg, Adam. “DHS, FBI warn of Android malware threat.”
August 2013. http://www.scmagazine.com/dhs-fbi-warn-first-responders-of-android-
threat/article/308961/.

[GSA] “Helping agencies plan, develop, test and launch anytime, anywhere, any device
mobile products and services for the public.” http://gsablogs.gsa.gov/dsic/get-it-
done/mobile-application-development-program/.

[Guirguis 2003] Guirguis, Ragi. “Network- and Host-Based Vulnerability Assessments:
An Introduction to a Cost Effective and Easy to Use Strategy.” SANS. June 14, 2003.
http://www.sans.org/reading_room/whitepapers/auditing/network-host-based-
vulnerability-assessments-introduction-cost-effective-easy_1200.

[Heath 2013] Heath, Nick. “Web apps: the future of the internet, or an impossible
dream?” August 2013. http://www.zdnet.com/web-apps-the-future-of-the-internet-or-an-
impossible-dream-7000019320/.

[Hernan 2006] Hernan, Shawn, Scott Lambert, Tomasz Ostwald, and Adam Shostack.
“Uncover Security Design Flaws Using The STRIDE Approach.” MSDN Magazine.
November 2006. http://msdn.microsoft.com/en-us/magazine/cc163519.aspx,

[HKSAR 2008] Government of the Hong Kong Special Administrative Region
(HKSAR). An Overview of Vulnerability Scanners. February 2008.
http://www.infosec.gov.hk/english/technical/files/vulnerability.pdf.

[Holland 2004] Holland. “Understanding IPS and IDS: Using IPS and IDS together for
Defense in Depth.” February 2004.
http://www.sans.org/reading_room/whitepapers/detection/understanding-ips-ids-ips-ids-
defense-in-depth_1381.

http://venturebeat.com/2015/08/11/ios-slips-to-62-enterprise-share-in-q2-2015-android-hits-32-and-windows-stays-flat-at-4/
http://venturebeat.com/2015/08/11/ios-slips-to-62-enterprise-share-in-q2-2015-android-hits-32-and-windows-stays-flat-at-4/
http://googlecommerce.blogspot.com/2013/10/with-google-play-services-40-us-android.html
http://googlecommerce.blogspot.com/2013/10/with-google-play-services-40-us-android.html
http://developer.android.com/training/permissions/requesting.html
http://cdn.govexec.com/interstitial.html?rf=http%3A%2F%2Fwww.govexec.com%2Fgbc%2Fmobile-security-efforts-secure-federal-devices%2F41004%2F
http://cdn.govexec.com/interstitial.html?rf=http%3A%2F%2Fwww.govexec.com%2Fgbc%2Fmobile-security-efforts-secure-federal-devices%2F41004%2F
http://www.scmagazine.com/dhs-fbi-warn-first-responders-of-android-threat/article/308961/
http://www.scmagazine.com/dhs-fbi-warn-first-responders-of-android-threat/article/308961/
http://gsablogs.gsa.gov/dsic/get-it-done/mobile-application-development-program/
http://gsablogs.gsa.gov/dsic/get-it-done/mobile-application-development-program/
http://www.sans.org/reading_room/whitepapers/auditing/network-host-based-vulnerability-assessments-introduction-cost-effective-easy_1200
http://www.sans.org/reading_room/whitepapers/auditing/network-host-based-vulnerability-assessments-introduction-cost-effective-easy_1200
http://www.zdnet.com/web-apps-the-future-of-the-internet-or-an-impossible-dream-7000019320/
http://www.zdnet.com/web-apps-the-future-of-the-internet-or-an-impossible-dream-7000019320/
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://www.infosec.gov.hk/english/technical/files/vulnerability.pdf
http://www.sans.org/reading_room/whitepapers/detection/understanding-ips-ids-ips-ids-defense-in-depth_1381
http://www.sans.org/reading_room/whitepapers/detection/understanding-ips-ids-ips-ids-defense-in-depth_1381

BB-9

[Hu] Hu, Cuixiong, and Iulian Neamtiu, “Automating GUI Testing for Android
Applications.” http://www.cs.ucr.edu/~neamtiu/pubs/ast11hu.pdf.

[Huang 2012] Huang, Linya, and Qiaoyan Wen. “The Design and Implementation of
Android File Access Control System.” October 2012.
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=The+Desig
n+and+Implementation+of+Android+File+Access+Control+System&x=48&y=12.

[Holwerda 2013] Holwerda, Thom. “The second operating system hiding in every mobile
phone.” November 2013.
http://www.osnews.com/story/27416/The_second_operating_system_hiding_in_every_m
obile_phone.

[IATAC 2007] IATAC/DACS. Software security assurance. July 31, 2007.
http://iac.dtic.mil/csiac/download/security.pdf.

[IEEE 2008] IEEE. IEEE Standard for Software Reviews and Audits. 2008. IEEE Std
1028-2008.

[IBM] IBM Software. “Mobility is Moving Fast. To Stay in Control, You Have to
Prepare for Change.” http://www-01.ibm.com/common/ssi/cgi-
bin/ssialias?infotype=SA&subtype=WH&htmlfid=TIW14132USEN.

[IDC 2013] IDC. “Android Pushes Past 80% Market Share While Windows Phone
Shipments Leap 156.0% Year Over Year in the Third Quarter, According to IDC.”
November 2013. http://www.idc.com/getdoc.jsp?containerId=prUS24442013.

[IDC2015] IDC. “Smartphone OS Market Share, 2015 Q2”.
http://www.idc.com/prodserv/smartphone-os-market-share.jsp. Retrieved 2016-03-11.

[Johnson] Johnson, Ryan, Zhaohui Wang, Corey Gagnon, Angelos Stavrou. “Analysis of
Android Applications’ Permissions.”
http://cs.gmu.edu/~astavrou/research/Analysis%20of%20Android%20Applications%E2
%80%99%20Permissions.pdf

[Kesäniemi 2009] Kesäniemi, Ari, and Nixu Oy. “Automatic vs. Manual Code
Analysis.” OWASP. November 2009. http://www.owasp.org,
https://www.owasp.org/images/5/53/Ari_kesaniemi_nixu_manual-vs-automatic-
analysis.pdf.

[Khan 2012] Khan, Sohail, Mohammad Nauman, Abu Talib Othman, and Shahrulniza
Musa. “How Secure is your Smartphone: An Analysis of Smartphone Security
Mechanisms.” 2012.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6246082&queryText%3D
How+Secure+is+your+Smartphone%3A+An+Analysis+of+Smartphone+Security+Mech
anisms.

http://www.cs.ucr.edu/~neamtiu/pubs/ast11hu.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=The+Design+and+Implementation+of+Android+File+Access+Control+System&x=48&y=12
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=The+Design+and+Implementation+of+Android+File+Access+Control+System&x=48&y=12
http://www.osnews.com/story/27416/The_second_operating_system_hiding_in_every_mobile_phone
http://www.osnews.com/story/27416/The_second_operating_system_hiding_in_every_mobile_phone
http://iac.dtic.mil/csiac/download/security.pdf
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=TIW14132USEN
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=TIW14132USEN
http://www.idc.com/getdoc.jsp?containerId=prUS24442013
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://cs.gmu.edu/~astavrou/research/Analysis%20of%20Android%20Applications%E2%80%99%20Permissions.pdf
http://cs.gmu.edu/~astavrou/research/Analysis%20of%20Android%20Applications%E2%80%99%20Permissions.pdf
https://www.owasp.org/images/5/53/Ari_kesaniemi_nixu_manual-vs-automatic-analysis.pdf
https://www.owasp.org/images/5/53/Ari_kesaniemi_nixu_manual-vs-automatic-analysis.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6246082&queryText%3DHow+Secure+is+your+Smartphone%3A+An+Analysis+of+Smartphone+Security+Mechanisms
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6246082&queryText%3DHow+Secure+is+your+Smartphone%3A+An+Analysis+of+Smartphone+Security+Mechanisms
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6246082&queryText%3DHow+Secure+is+your+Smartphone%3A+An+Analysis+of+Smartphone+Security+Mechanisms

 BB-10

[Knight 1986] Knight, J. C. and Leveson, N. G. “An experimental evaluation of the
assumption of independence in multiversion programming.” IEEE Transactions on

Software Engineering. January 1986.

[Koetsier] Koetsier, John. “700K of the 1.2M apps available for iPhone, Android, and
Windows are zombies.” August 2013. http://venturebeat.com/2013/08/26/700k-of-the-1-
2m-apps-available-for-iphone-android-and-windows-are-zombies/.

[Krebs] Krebs, Brian. “Beware of Juice-Jacking.”
http://krebsonsecurity.com/2011/08/beware-of-juice-jacking/.

[Kupsch] Kupsch, James A., and Barton P. Miller. “Manual vs. Automated Vulnerability
Assessment: A Case Study.”
http://pages.cs.wisc.edu/~kupsch/va/ManVsAutoVulnAssessment.pdf.

[Lanier] Lanier, Zach, and Andrew Reiter (Veracode). “Mapping & Evolution of Android
Permissions.” http://www.slideshare.net/quineslideshare/mapping-and-evolution-of-
Android-permissions.

[Lee2014] Lee, Robert M., “Cyber Threat Intelligence”, The State of Security, Oct 2,
2014, http://www.tripwire.com/state-of-security/security-data-protection/cyber-threat-
intelligence/

[Liu 2011] Liu, Jianye, and Jiankun Yu. “Research on Development of Android
Applications.” 2011.

[Lomas 2013] Lomas, Natasha. “More Data Showing iOS, Especially The iPhone, Still
Killing It In The Enterprise, At Android’s Expense.” March 2013.
http://techcrunch.com/2013/03/07/more-data-showing-ios-and-especially-the-iphone-
still-killing-it-in-the-enterprise-at-androids-expense/.

[Lookout] Lookout Mobility. “Lookout Mobility Technical Teardown: DroidDream.”
2011. https://blog.lookout.com/wp-content/uploads/2011/03/COMPLETE-DroidDream-
Technical-Tear-Down_Lookout-Mobile-Security.pdf.

[MacDonald 2009] MacDonald, Neil (Gartner). “Best Practices: Secure Mobile
Development for iOS and Android.” July 2009.
https://viaforensics.com/resources/reports/best-practices-ios-Android-secure-mobile-
development/.

[MacDonald 2009] MacDonald, Neil (Gartner). “Byte Code Analysis is not the same as
Binary Analysis.” 2009. http://blogs.gartner.com/neil_macdonald/2009/07/24/byte-code-
analysis-is-not-the-same-as-binary-analysis/.

[Madden 2012] Madden, Brian. “What is MDM, MAM, and MIM, and what is the
difference?” 2012.

http://venturebeat.com/2013/08/26/700k-of-the-1-2m-apps-available-for-iphone-android-and-windows-are-zombies/
http://venturebeat.com/2013/08/26/700k-of-the-1-2m-apps-available-for-iphone-android-and-windows-are-zombies/
http://krebsonsecurity.com/2011/08/beware-of-juice-jacking/
http://pages.cs.wisc.edu/~kupsch/va/ManVsAutoVulnAssessment.pdf
http://www.slideshare.net/quineslideshare/mapping-and-evolution-of-Android-permissions
http://www.slideshare.net/quineslideshare/mapping-and-evolution-of-Android-permissions
http://www.tripwire.com/state-of-security/security-data-protection/cyber-threat-intelligence/
http://www.tripwire.com/state-of-security/security-data-protection/cyber-threat-intelligence/
http://techcrunch.com/2013/03/07/more-data-showing-ios-and-especially-the-iphone-still-killing-it-in-the-enterprise-at-androids-expense/
http://techcrunch.com/2013/03/07/more-data-showing-ios-and-especially-the-iphone-still-killing-it-in-the-enterprise-at-androids-expense/
https://blog.lookout.com/wp-content/uploads/2011/03/COMPLETE-DroidDream-Technical-Tear-Down_Lookout-Mobile-Security.pdf
https://blog.lookout.com/wp-content/uploads/2011/03/COMPLETE-DroidDream-Technical-Tear-Down_Lookout-Mobile-Security.pdf
https://viaforensics.com/resources/reports/best-practices-ios-Android-secure-mobile-development/
https://viaforensics.com/resources/reports/best-practices-ios-Android-secure-mobile-development/
http://blogs.gartner.com/neil_macdonald/2009/07/24/byte-code-analysis-is-not-the-same-as-binary-analysis/
http://blogs.gartner.com/neil_macdonald/2009/07/24/byte-code-analysis-is-not-the-same-as-binary-analysis/

BB-11

http://www.brianmadden.com/blogs/brianmadden/archive/2012/05/29/what-is-mdm-
mam-and-mim-and-what-s-the-difference.aspx.

[Mahmood 2012] Mahmood, Riyadh, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei,
Sam Malek, and Angelos Stavrou. “A Whitebox Approach for Automated Security
Testing of Android Applications on the Cloud.” June 2012.
http://cs.gmu.edu/~smalek/papers/AST2012.pdf.

[Maji 2010] Maji, Amiya Kumar, Kangli Hao, Salmin Sultana, and Saurabh Bagchi.
“Characterizing Failures in Mobile OSes: A Case Study with Android and Symbian.”
November 2010.
https://engineering.purdue.edu/dcsl/publications/papers/2010/Android_issre10_submit.pd
f.

[Maji 2012] Maji, Amiya K., Fahad A. Arshad, and Saurabh Bagchi. “An Empirical
Study of the Robustness of Inter-component Communications in Android.” June 2012.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6263963&queryText%3D
An+Empirical+Study+of+the+Robustness+of+Inter-
component+Communications+in+Android.

[Malek 2009] Malek, Sam, George Edwards, Yuriy Brun, Hossein Tajalli, Joshua Garcia,
Ivo Krka, Nenad Medvidovic, Marija Mikic-Rakic, and Gaurav S. Sukhatme. “An
architecture-driven software mobility framework.” November 2009.
http://robotics.usc.edu/publications/media/uploads/pubs/704.pdf.

[Malek 2010] Malek, Sam, George Edwards, Yuriy Brun, Hossein Tajalli, Joshua Garcia,
Ivo Krka, Nenad Medvidovic, Marija Mikic-Rakic, and Gaurav Sukhatme. “An
Architecture-Driven Software Mobility Framework.” June 2010.
http://cs.gmu.edu/~smalek/papers/JSS2010.pdf.

[Malek 2012] Malek, Sam, Naeem Esfahani, Thabet Kacem, Riyadh Mahmood, Nariman
Mirzaei, and Angelos Stavrou. “A Framework for Automated Security Testing of
Android Applications on the Cloud.” June 2012.
http://cs.gmu.edu/~smalek/papers/SERE2012.pdf.

[Manadhata 2008] Manadhata, Pratyusa K. An Attack Surface Metric. November 2008.
CMU-CS-08-152. http://reports-archive.adm.cs.cmu.edu/anon/2008/CMU-CS-08-
152.pdf

[Marforio] Marforio, Claudio, Aurelien Francilon, and Srdjan Capkun. Application

Collusion Attack on the Permission-Based Security Model and its Implications for

Modern Smartphone Systems. ftp://ftp.inf.ethz.ch/doc/tech-reports/7xx/724.pdf.

[Marien 2016] Marien, John R. (Chair), Robert A. Martin (Co-Chair), February 2016,
How to put software assurance into contracts: An effort of the Department of Defense

http://www.brianmadden.com/blogs/brianmadden/archive/2012/05/29/what-is-mdm-mam-and-mim-and-what-s-the-difference.aspx
http://www.brianmadden.com/blogs/brianmadden/archive/2012/05/29/what-is-mdm-mam-and-mim-and-what-s-the-difference.aspx
http://cs.gmu.edu/~smalek/papers/AST2012.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6263963&queryText%3DAn+Empirical+Study+of+the+Robustness+of+Inter-component+Communications+in+Android
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6263963&queryText%3DAn+Empirical+Study+of+the+Robustness+of+Inter-component+Communications+in+Android
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6263963&queryText%3DAn+Empirical+Study+of+the+Robustness+of+Inter-component+Communications+in+Android
http://robotics.usc.edu/publications/media/uploads/pubs/704.pdf
http://cs.gmu.edu/~smalek/papers/JSS2010.pdf
http://cs.gmu.edu/~smalek/papers/SERE2012.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2008/CMU-CS-08-152.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2008/CMU-CS-08-152.pdf
ftp://ftp.inf.ethz.ch/doc/tech-reports/7xx/724.pdf

 BB-12

Software Assurance (SwA) Community of Practice (CoP) Contract Language Working

Group.

[Matsudo 2012] Matsudo, Takayuki, Eiichiro Kodama, Jiahong Wang, and Toyoo
Takata. “A Proposal of Security Advisory System at the Time of the Installation of
Applications on Android OS.” 2012.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6354836&queryText%3D
A+Proposal+of+Security+Advisory+System+at+the+Time+of+the+Installation+of+Appl
ications+on+Android+OS%E2%80%9D%2C+Takayuki+Matsudo.

[Mattmann 2012] Mattmann, Chris A., Nenad Medvidovic, Sam Malek, George Edwards,
and Somo Banerjee. “A Middleware Platform for Providing Mobile and Embedded
Computing Instruction to Software Engineering Students.” August 2012.
http://cs.gmu.edu/~smalek/papers/TE2012.pdf.

[McDowell 2009] McDowell, Mindi and Allen Householder. “Security Tip (ST04-004),
Understanding Firewalls.” U.S. CERT. 2009. http://www.us-cert.gov/ncas/tips/ST04-
004.

[McGraw 2011] McGraw, Gary. “Software Security.” Cigital. 2011.
http://www.cigital.com/papers/download/bsi1-swsec.pdf.

[McGraw, 2003] McGraw, Gary. Cigital, “How Now Software Security?” Cigital. 2003.
http://www.cigital.com/whitepapers/dl/How_Now_Software_Security.pdf.

[McGraw 2006] McGraw, Gary. “Java Security for Smart Cards.” Cigital. 2006.
http://www.cigital.com/whitepapers/dl/Java_Security_for_Smart_Cards.pdf.

[Meier 2003] Meier, J.D., Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray
Escamilla and Anandha Murukan. Microsoft. 2003. “Improving Web Application
Security: Threats and Countermeasures.”

[Mello2015] Mello, John. “Highlights from the 2015 Gartner Magic Quadrant for
application security testing.” TechBeacon. 2015-08-27, http://techbeacon.com/highlights-
2015-gartner-magic-quadrant-application-security-testing. This is a summary of the
“2015 Gartner Magic Quadrant for application security testing.”

[Microsoft Signature] Microsoft. “How to tell if a digital signature is trustworthy.”
http://office.microsoft.com/en-us/excel-help/how-to-tell-if-a-digital-signature-is-
trustworthy-HA001230875.aspx

[Milano 2012] Milano, Diego Torrest. “Android Application Testing Guide.” August
2012. http://ebookbrowsee.net/android-application-testing-guide-diego-torres-milano-
pdf-d386205579.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6354836&queryText%3DA+Proposal+of+Security+Advisory+System+at+the+Time+of+the+Installation+of+Applications+on+Android+OS%E2%80%9D%2C+Takayuki+Matsudo
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6354836&queryText%3DA+Proposal+of+Security+Advisory+System+at+the+Time+of+the+Installation+of+Applications+on+Android+OS%E2%80%9D%2C+Takayuki+Matsudo
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6354836&queryText%3DA+Proposal+of+Security+Advisory+System+at+the+Time+of+the+Installation+of+Applications+on+Android+OS%E2%80%9D%2C+Takayuki+Matsudo
http://cs.gmu.edu/~smalek/papers/TE2012.pdf
http://www.us-cert.gov/ncas/tips/ST04-004
http://www.us-cert.gov/ncas/tips/ST04-004
http://www.cigital.com/papers/download/bsi1-swsec.pdf
http://www.cigital.com/whitepapers/dl/How_Now_Software_Security.pdf
http://www.cigital.com/whitepapers/dl/Java_Security_for_Smart_Cards.pdf
http://techbeacon.com/highlights-2015-gartner-magic-quadrant-application-security-testing
http://techbeacon.com/highlights-2015-gartner-magic-quadrant-application-security-testing
http://office.microsoft.com/en-us/excel-help/how-to-tell-if-a-digital-signature-is-trustworthy-HA001230875.aspx
http://office.microsoft.com/en-us/excel-help/how-to-tell-if-a-digital-signature-is-trustworthy-HA001230875.aspx
http://ebookbrowsee.net/android-application-testing-guide-diego-torres-milano-pdf-d386205579
http://ebookbrowsee.net/android-application-testing-guide-diego-torres-milano-pdf-d386205579

BB-13

[Mills 2012] Mills, Elinor. “Google now scanning Android apps for malware.” CNet.
February 2, 2012. http://news.cnet.com/8301-27080_3-57370650-245/google-now-
scanning-android-apps-for-malware/.

[Miller 2007] Miller, Miller, Charlie and Zachary N. J. Peterson. March 1, 2007.
Analysis of Mutation and Generation-Based Fuzzing Whitepaper.
https://www.defcon.org/images/defcon-15/dc15-presentations/Miller/Whitepaper/dc-15-
miller-WP.pdf or https://fuzzing.info/papers/.

[Mirzaei 2012] Mirzaei, Nariman, Sam Malek, Corina S. Păsăreanu, Naeem Esfahani,
and Riyadh Mahmood. “Testing Android Apps through Symbolic Execution.” November
2012. http://cs.gmu.edu/~smalek/papers/JPF2012.pdf.

[Motes 2011] Motes, LTC Gregory. “U.S. Army Mobile Application Development: A
Coder’s Perspective,” February 2011.
http://www.ausa.org/publications/armymagazine/archive/2011/2/Documents/FC_Motes_
0211.pdf.

[Mobile App Testing Blog 2013] Mobile App Testing Blog. “Important Mobile App
Privacy Recommendations.” February 2013.
http://www.mobileapptesting.com/important-mobile-app-privacy-
recommendations/2013/02/.

[MobileMAN] MobileMAN. “GLOSSARY.”
http://mobileman.projects.supsi.ch/glossary.html.

[MobiForge] MobiForge Stats. https://mobiforge.com/stats

[Murmuria] Murmuria, Rahul, Jeffrey Medsger, Angelos Stavrou, and Jeffrey M. Voas.
“Mobile Application and Device Power Usage Measurements.” 2013.
http://cs.gmu.edu/~astavrou/research/Android_Power_Measurements_Analysis_SERE_1
2.pdf.

[Muttik 2011] Muttik, Igor. “Securing Mobile Devices: Present and Future.” 2011.
http://www.mcafee.com/us/resources/reports/rp-securing-mobile-devices.pdf.

[NcNamee 2011] McNamee, Kevin (Kindsight). “Malware Analysis Report Trojan:
AndroidOS / Droid Deluxe.” September 2011.
http://www.kindsight.net/sites/default/files/Kindsight_Malware_Analysis-Android-
Trojan-DroidDeluxe-final_0.pdf.

[NDAA 2014] U.S. Congress. National Defense Authorization Act for Fiscal Year 2014.
http://armedservices.house.gov/index.cfm/files/serve?File_id=215AC26C-A0E7-4B02-
A63C-DD9D800AF2DB.

http://news.cnet.com/8301-27080_3-57370650-245/google-now-scanning-android-apps-for-malware/
http://news.cnet.com/8301-27080_3-57370650-245/google-now-scanning-android-apps-for-malware/
https://www.defcon.org/images/defcon-15/dc15-presentations/Miller/Whitepaper/dc-15-miller-WP.pdf
https://www.defcon.org/images/defcon-15/dc15-presentations/Miller/Whitepaper/dc-15-miller-WP.pdf
https://fuzzing.info/papers/
http://cs.gmu.edu/~smalek/papers/JPF2012.pdf
http://www.ausa.org/publications/armymagazine/archive/2011/2/Documents/FC_Motes_0211.pdf
http://www.ausa.org/publications/armymagazine/archive/2011/2/Documents/FC_Motes_0211.pdf
http://www.mobileapptesting.com/important-mobile-app-privacy-recommendations/2013/02/
http://www.mobileapptesting.com/important-mobile-app-privacy-recommendations/2013/02/
http://mobileman.projects.supsi.ch/glossary.html
http://cs.gmu.edu/~astavrou/research/Android_Power_Measurements_Analysis_SERE_12.pdf
http://cs.gmu.edu/~astavrou/research/Android_Power_Measurements_Analysis_SERE_12.pdf
http://www.mcafee.com/us/resources/reports/rp-securing-mobile-devices.pdf
http://www.kindsight.net/sites/default/files/Kindsight_Malware_Analysis-Android-Trojan-DroidDeluxe-final_0.pdf
http://www.kindsight.net/sites/default/files/Kindsight_Malware_Analysis-Android-Trojan-DroidDeluxe-final_0.pdf
http://armedservices.house.gov/index.cfm/files/serve?File_id=215AC26C-A0E7-4B02-A63C-DD9D800AF2DB
http://armedservices.house.gov/index.cfm/files/serve?File_id=215AC26C-A0E7-4B02-A63C-DD9D800AF2DB

 BB-14

[NDIA 2008] National Defense Industrial Association (NDIA) System Assurance
Committee. Engineering for System Assurance. August 2008.
http://www.acq.osd.mil/se/docs/SA-Guidebook-v1-Oct2008.pdf.

[NIST SP 800-124rev1 2013] National Institute of Standards and Technology (NIST).
“Guidelines for Managing the Security of Mobile Devices in the Enterprise.” Sep 2013.
http://csrc.nist.gov/publications/drafts/800-124r1/draft_sp800-124-rev1.pdf.

[NIST SP-163] National Institute of Standards and Technology (NIST). “Guidelines for
Testing and Vetting Mobile Applications – DRAFT.” 2013.
http://www.nist.gov/itl/csd/mobile-device-security-meeting.cfm.

[NIST 2013] National Institute of Standards and Technology (NIST). “NIST Mobile
Security & Forensics Page.” 2013.
http://csrc.nist.gov/groups/SNS/mobile_security/index.html.

[NIST 2012] National Institute of Standards and Technologies (NIST). “FIPS Special
Publication 800-124 Revision 1 (Draft): Guidelines for Managing and Securing Mobile
Devices in the Enterprise (Draft).” July 2012.
http://csrc.nist.gov/publications/drafts/800-124r1/draft_sp800-124-rev1.pdf.

[NIST CFTT] National Institute for Standards and Technologies (NIST) Computer
Forensics Tools Testing (CFTT). http://www.cftt.nist.gov/.

[NIST Ockham] NIST. “SATE V Ockham Sound Analysis Criteria.” Retrieved July
2013. http://samate.nist.gov/SATE5OckhamCriteria.html.

[Northrup 2013] Northrup, Tony. “Firewalls.” 2013. http://technet.microsoft.com/en-
us/library/cc700820.aspx.

[NSA 2012] National Security Agency (NSA). “Security Configuration
Recommendations for Apple iOS 5 Devices.” March 2012.
http://www.nsa.gov/ia/_files/os/applemac/Apple_iOS_5_Guide.pdf.

 [NQ Mobile 2012] NQ Mobile. “Mobile Security Report: An In-Depth Look at Mobile
Threats, Vulnerabilities, and Challenges.” NQ Mobile. February 2012.
http://docs.nq.com/2011_NQ_Mobile_Security_Report.pdf.

[NVD] National Vulnerability Database (NVD). “CWE - Common Weakness
Enumeration.” http://nvd.nist.gov/cwe.cfm.

[Open Group 2011] Open Group. Open Trusted Technology Provider Framework (O-
TTPF). February 2011.
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid
=12341.

[Oracle Signature] Oracle. “Verifying a Digital Signature.” 1995.
http://docs.oracle.com/javase/tutorial/security/apisign/versig.html.

http://www.acq.osd.mil/se/docs/SA-Guidebook-v1-Oct2008.pdf
http://csrc.nist.gov/publications/drafts/800-124r1/draft_sp800-124-rev1.pdf
http://www.nist.gov/itl/csd/mobile-device-security-meeting.cfm
http://csrc.nist.gov/groups/SNS/mobile_security/index.html
http://csrc.nist.gov/publications/drafts/800-124r1/draft_sp800-124-rev1.pdf
http://www.cftt.nist.gov/
http://samate.nist.gov/SATE5OckhamCriteria.html
http://technet.microsoft.com/en-us/library/cc700820.aspx
http://technet.microsoft.com/en-us/library/cc700820.aspx
http://www.nsa.gov/ia/_files/os/applemac/Apple_iOS_5_Guide.pdf
http://docs.nq.com/2011_NQ_Mobile_Security_Report.pdf
http://nvd.nist.gov/cwe.cfm
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12341
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12341
http://docs.oracle.com/javase/tutorial/security/apisign/versig.html

BB-15

[OWASP] OWASP. “OWASP Mobile Security Project.”
https://www.owasp.org/index.php/OWASP_Mobile_SecurityProject.

[Palmer 2001] Palmer, Gary. “A Road Map for Digital Forensic Research. Technical
Report DTR-T0010-01, DFRWS.” November 2001.
http://isis.poly.edu/kulesh/forensics/docs/DFRWS_RM_Final.pdf.

[Patel] Patel, Parth. “Introducing ASEF – Android Security Evaluation Framework.”
https://community.qualys.com/servlet/JiveServlet/downloadBody/3675-102-4-
6580/ASEF-Blog(4).pdf

[Pieterse 2012] Pieterse, Heloise, and Martin S. Olivier. “Android Botnets on the Rise:
Trends and Characteristics.” August 2012.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6320432&queryText%3D
Android+Botnets+on+the+Rise%3A+Trends+and+Characteristics.

[Pollock] Pollock, Clint. “The Mobile App Top 10 Risks.”
https://www.owasp.org/images/9/94/MobileTopTen.pdf.

[Rausnitz 2013]. Rausnitz, Zach. “NIST vetting commercial Android apps for security,
battery use.” FierceMobileGovernment. February 2013.
http://www.fiercemobilegovernment.com/story/nist-vetting-commercial-android-apps-
security-battery-use/2013-02-27.

[Rebel] Rebel Labs. “Code Quality Tools Review for 2013: Sonar, Findbugs, PMD and
Checkstyle: Catching up with Code Quality Tools from 2012.” March 12, 2013.
http://zeroturnaround.com/rebellabs/code-quality-tools-review-for-2013-sonar-findbugs-
pmd-and-checkstyle/.

[Rhodes 2009] Rhodes, Boland, Fong, and Kass. NIST Interagency Report 7608,
“Software Assurance Using Structured Assurance Case Models.” May 2009.
http://nvl.nist.gov/pub/nistpubs/ir/2009/ir7608.pdf.

[Riyadh] Riyadh Mahmood, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam
Malek, Angelos Stavrou, “A Whitebox Approach for Automated Security Testing of
Android Applications on the Cloud.” http://cs.gmu.edu/~smalek/papers/AST2012.pdf.

[SAFECode 2012] SAFECode (Editor Stacy Simpson and contributors Diego Baldini,
Gunter Bitz, David Dillard, Chris Fagan, Brad Minnis, and Dan Reddy). “Software
Integrity Controls: An Assurance-Based Approach to Minimizing Risks in the Software
Supply Chain.” June 2010.
http://www.safecode.org/publications/SAFECode_Software_Integrity_Controls0610.pdf.

[Salter] Salter, Chris (NSA), O. Sami Saydjari (DARPA), Bruce Schneier, (Counterpane
Systems), Jim Wallner (NSA). “Toward A Secure System Engineering Methodology.”
http://www.schneier.com/paper-secure-methodology.pdf.

https://www.owasp.org/index.php/OWASP_Mobile_SecurityProject
http://isis.poly.edu/kulesh/forensics/docs/DFRWS_RM_Final.pdf
https://community.qualys.com/servlet/JiveServlet/downloadBody/3675-102-4-6580/ASEF-Blog(4).pdf
https://community.qualys.com/servlet/JiveServlet/downloadBody/3675-102-4-6580/ASEF-Blog(4).pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6320432&queryText%3DAndroid+Botnets+on+the+Rise%3A+Trends+and+Characteristics
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6320432&queryText%3DAndroid+Botnets+on+the+Rise%3A+Trends+and+Characteristics
https://www.owasp.org/images/9/94/MobileTopTen.pdf
http://www.fiercemobilegovernment.com/story/nist-vetting-commercial-android-apps-security-battery-use/2013-02-27
http://www.fiercemobilegovernment.com/story/nist-vetting-commercial-android-apps-security-battery-use/2013-02-27
http://zeroturnaround.com/rebellabs/code-quality-tools-review-for-2013-sonar-findbugs-pmd-and-checkstyle/
http://zeroturnaround.com/rebellabs/code-quality-tools-review-for-2013-sonar-findbugs-pmd-and-checkstyle/
http://nvl.nist.gov/pub/nistpubs/ir/2009/ir7608.pdf
http://cs.gmu.edu/~smalek/papers/AST2012.pdf
http://www.safecode.org/publications/SAFECode_Software_Integrity_Controls0610.pdf
http://www.schneier.com/paper-secure-methodology.pdf

 BB-16

[SCALe 2012] Robert C. Seacord, William Dormann, James McCurley, Philip Miller,
Robert Stoddard, David Svoboda, Jefferson Welch (Source Code Analysis Laboratory
(SCALe)). April 2012. http://www.sei.cmu.edu/library/abstracts/reports/12tn013.cfm.

[Schechter 2013] Schechter, Erik. “How-DARPA-delivers-tactical-apps-mobile-devices-
field.” December 2013.
http://www.c4isrnet.com/article/M5/20131204/C4ISRNET13/312040021/How-DARPA-
delivers-tactical-apps-mobile-devices-field.

[Seo 2012] Seo, Seung-Hyun, Dong-Guen Lee, and Kangbin Yim. “Analysis on
Maliciousness for Mobile Applications.” July 2012.

[Serebryany 2012] Serebryany, Konstantin, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. “AddressSanitizer: A Fast Address Sanity Checker.” Usenix Annual

Technical Conference (ATC) 2012. 2012. https://www.usenix.org/conference/
usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker.

[Serebryan2012] Serebryan, Konstantin, Derek Bruening, Alexander Potapenko, and
Dmitry Vyuko, “AddressSanitizer: A Fast Address Sanity Checker”, Proceedings of the

USENIX Annual Technical Conference (ATC) 2012. Boston, MA.
http://research.google.com/pubs/pub37752.html

[Seriot] Seriot, Nicholas. “iPhone Privacy.”
http://seriot.ch/resources/talks_papers/iPhonePrivacy.pdf.

[Sethi 2011] Sethi, Amit, Omair Manzoor, and Tarun Sethi. “User Authentication on
Mobile Devices”. 2012. http://www.cigital.com/wp-content/
uploads/downloads/2012/11/mobile-authentication.pdf.

[Shah] Shah, Kunjah. “Penetration Testing Android Applications.”
www.mcafee.com/us/resources/white-papers/foundstone/wp-pen-testing-Android-
apps.pdf.

[Soltani 2013] Soltani, Ashkan and Timothy B. Lee. “Research shows how MacBook
Webcams can spy on their users without warning.” December 2013.
http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/18/research-shows-how-
macbook-webcams-can-spy-on-their-users-without-warning/.

[Souppaya 2012] Souppaya, Murugiah, and Karen Scarfone. “Guidelines for Managing
and Securing Mobile Devices in the Enterprise (Draft).” July 2012.
http://csrc.nist.gov/publications/drafts/800-124r1/draft_sp800-124-rev1.pdf.

[Steele 2013] Steele, Colin. “Mobile device management versus mobile application
management.” 2013. http://searchconsumerization.techtarget.com/feature/Mobile-
device-management-vs-mobile-application-management.

http://www.sei.cmu.edu/library/abstracts/reports/12tn013.cfm
http://www.c4isrnet.com/article/M5/20131204/C4ISRNET13/312040021/How-DARPA-delivers-tactical-apps-mobile-devices-field
http://www.c4isrnet.com/article/M5/20131204/C4ISRNET13/312040021/How-DARPA-delivers-tactical-apps-mobile-devices-field
https://www.usenix.org/conference/%20usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://www.usenix.org/conference/%20usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
http://research.google.com/pubs/pub37752.html
http://seriot.ch/resources/talks_papers/iPhonePrivacy.pdf
http://www.mcafee.com/us/resources/white-papers/foundstone/wp-pen-testing-Android-apps.pdf
http://www.mcafee.com/us/resources/white-papers/foundstone/wp-pen-testing-Android-apps.pdf
http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/18/research-shows-how-macbook-webcams-can-spy-on-their-users-without-warning/
http://www.washingtonpost.com/blogs/the-switch/wp/2013/12/18/research-shows-how-macbook-webcams-can-spy-on-their-users-without-warning/
http://csrc.nist.gov/publications/drafts/800-124r1/draft_sp800-124-rev1.pdf
http://searchconsumerization.techtarget.com/feature/Mobile-device-management-vs-mobile-application-management
http://searchconsumerization.techtarget.com/feature/Mobile-device-management-vs-mobile-application-management

BB-17

[Sutton2007] Sutton, Michael, Adam Greene, and Pedram Amini. Fuzzing: Brute Force

Vulnerability Discovery. Addison-Wesley. Upper Saddle River, NJ. 2007. ISBN 0-
321-44611-9.

[SwAForum 2012] Software Assurance Forum. Software Assurance in Acquisition and

Contract Language. May 18, 2012. https://buildsecurityin.us-cert.gov/swa/software-
assurance-pocket-guide-series

[Szydlowski] Szydlowski, Martin, Manuel Egele, Christopher Kruegel, and Giovanni
Vigna. “Challenges for Dynamic Analysis of iOS Applications.”
http://iseclab.org/papers/iphone-dynamic.pdf.

[Takanen2008] Takanen, Ari, Jared D. Demott, Charles Miller. Fuzzing for Software

Security Testing and Quality Assurance. Artech House. Boston, MA. 2008. ISBN 978-
1-59693-214-2.

[Tesfay 2012] Tesfay, Werderufael Berhane, Todd Booth, and Karl Andersson.
“Reputation Based Security Model for Android Applications.” 2012.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6296066.

[Thompson 1984] Thompson, Ken. “Reflections on Trusting Trust.” Communications of
the ACM. Volume 27, Number 8. pp. 761-763. April 1984.
http://www.acm.org/classics/sep95.

[Tooke 2012] Tooke, William. “The Application Software Assurance Center of
Excellence (ASACoE) Process.” Department of Defense (DoD) Community of Practice
meeting. September 19, 2012.

[Tracy 2012] Tracy, Kim W. “Mobile Application Development Experiences on Apple’s
iOS and Android OS.” July 2012. http://www.deepdyve.com/lp/institute-of-electrical-
and-electronics-engineers/mobile-application-development-experiences-on-apple-s-ios-
and-android-vp3Z0XSIUw.

[Utest] Utest. “The Essential Guide to Mobile App Testing.”
http://www.utest.com/landing-blog/essential-guide-mobile-app
testing?ls=Banner%20Ad&mc=Display-Blog_MAT-MenuBar

[viaForensics] viaForensics. “Mobile Security Risk Report: Understanding the Security
Impact of iOS and Android in the Enterprise.”
https://viaforensics.com/resources/reports/mobile-security-risk-report/.

[ViaForensics 2011] ViaForensics. “appWatchdog Findings: Sensitive User Data Stored
on Android and iPhone Devices.” July 2011.
https://viaforensics.com/resources/reports/mobile-app-security-study/overall/.

https://buildsecurityin.us-cert.gov/swa/software-assurance-pocket-guide-series
https://buildsecurityin.us-cert.gov/swa/software-assurance-pocket-guide-series
http://iseclab.org/papers/iphone-dynamic.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6296066
http://www.acm.org/classics/sep95
http://www.deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/mobile-application-development-experiences-on-apple-s-ios-and-android-vp3Z0XSIUw
http://www.deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/mobile-application-development-experiences-on-apple-s-ios-and-android-vp3Z0XSIUw
http://www.deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/mobile-application-development-experiences-on-apple-s-ios-and-android-vp3Z0XSIUw
https://viaforensics.com/resources/reports/mobile-security-risk-report/
https://viaforensics.com/resources/reports/mobile-app-security-study/overall/

 BB-18

[Veracode 2011] Veracode. “State of Software Security Report: The Intractable Problem
of Insecure Software Volume 4.” December 7, 2011. http://media.blackhat.com/bh-eu-
12/Wysopal/bh-eu-12-Wysopal-State_of_Software_Security-WP.pdf.

[VMWare and parasoft 2012] VMWare and Parasoft. “Mobile Powered Government:
Driving Increasingly Productive, Efficient Agencies.” February 2012.
http://www.meritalk.com/pdfs/Mobile_Powered_Government_Media_Coverage.pdf.

[Voas 2013] Voas, Jeffrey, Steve Quirolgico, Christoph Michael, Irena Bojanova, and
Karen Scarfone. “Technical Considerations for Vetting Applications for Android Mobile
Devices (Draft). NIST Special Publication (SP) 800-163.” November 2013.

[Williams2012] Williams, Jeff, and Arshan Dabirsiaghi. “The Unfortunate Reality of
Insecure Libraries.” March 2012.
https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-
Unfortunate-Reality-of-Insecure-Libraries.pdf.

[Walker 2013] Walker. “DHS to stand up ‘car wash’ for mobile apps.”
FierceMobileGovernment. July 2013.
http://www.fiercemobilegovernment.com/story/dhs-stand-car-wash-mobile-apps/2013-
07-17.

[Wang 2011] Wang, Zhaohui and Angelos Stavrou. “Exploiting Smart-Phone USB
Connectivity for Fun and Profit.” Proceedings of the 26th Annual Computer Security

Applications Conference (ACSAC). 2011.
http://cs.gmu.edu/~astavrou/research/acsac10.pdf or
http://www.acsac.org/2010/preview/2010-acsac-proceedings.pdf.

[Wang, 2012] Wang, Zhaohui, Ryan Johnson, and Angelos Stavrou. “Attestation &
Authentication for USB Communications.” 2012.
http://cs.gmu.edu/~astavrou/research/USB_Attestation_SERE_2012.pdf.

[Weber] Weber, Sam, Paul A. Karger, and Amit Paradkar. “A Software Flaw Taxonomy:
Aiming Tools At Security.”
http://cwe.mitre.org/documents/sources/ASoftwareFlawTaxonomy-
AimingToolsatSecurity%5BWeber,Karger,Paradkar%5D.pdf.

[Wei 2012] Wei, Xuetao, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos.
“Malicious Android Applications in the Enterprise: What Do They Do and How Do We
Fix It?”
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6313688&queryText%3D

[Wheeler 1996] Wheeler, David A., Bill Brykczynski, and Reginald N. Meeson, Jr.
Software Inspection: An Industry Best Practice. IEEE Computer Society Press. 1996.

http://media.blackhat.com/bh-eu-12/Wysopal/bh-eu-12-Wysopal-State_of_Software_Security-WP.pdf
http://media.blackhat.com/bh-eu-12/Wysopal/bh-eu-12-Wysopal-State_of_Software_Security-WP.pdf
http://www.meritalk.com/pdfs/Mobile_Powered_Government_Media_Coverage.pdf
https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-Libraries.pdf
https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-Unfortunate-Reality-of-Insecure-Libraries.pdf
http://www.fiercemobilegovernment.com/story/dhs-stand-car-wash-mobile-apps/2013-07-17
http://www.fiercemobilegovernment.com/story/dhs-stand-car-wash-mobile-apps/2013-07-17
http://cs.gmu.edu/~astavrou/research/acsac10.pdf
http://www.acsac.org/2010/preview/2010-acsac-proceedings.pdf
http://cs.gmu.edu/~astavrou/research/USB_Attestation_SERE_2012.pdf
http://cwe.mitre.org/documents/sources/ASoftwareFlawTaxonomy-AimingToolsatSecurity%5BWeber,Karger,Paradkar%5D.pdf
http://cwe.mitre.org/documents/sources/ASoftwareFlawTaxonomy-AimingToolsatSecurity%5BWeber,Karger,Paradkar%5D.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6313688&queryText%3D

 BB-19

[Wheeler2009] Wheeler, David A. Fully Countering Trusting Trust through Diverse

Double-Compiling. 2009. http://www.dwheeler.com/trusting-trust/.

[Wheeler 2012] Wheeler, David A. and Rama S. Moorthy. SOAR-Lite Phase I. August
2012.

[Wheeler2015] Wheeler, David A. How to Prevent the next Heartbleed. 2015-09-18.
Retrieved 2016-03-07. http://www.dwheeler.com/essays/heartbleed.html

[Wheeler2016] Wheeler, David A. The Apple goto fail vulnerability: lessons learned.
2016-03-01. Retrieved 2016-10-27. http://www.dwheeler.com/essays/apple-goto-
fail.html

[Wei 2012] Wei, Xuetao, Lorenzo Gomez, Iulian Neamtiu, Michalis Faloutsos.
“Permission Evolution in the Android Ecosystem.” 2012.
http://www.cs.ucr.edu/~neamtiu/pubs/acsac12wei.pdf.

[Wei 2012] Wei, Xuetao, Lorenzo Gomez, Iulian Neamtiu, Michalis Faloutsos.
“ProfileDroid: Multi-layer Profiling of Android Applications.” 2012.
http://www.cs.ucr.edu/~neamtiu/pubs/mobicom12wei.pdf.

[Whitwam 2011] Whitwam, Ryan. “Android Security Threats and How You Can Stay
Safe.” September 2011. http://www.extremetech.com/mobile/95147-Android-security-
threats-and-what-users-can-do-to-stay-safe.

[Woody2014] Woody, Carol, Robert Eillison, and William Nichols. Predicting Software
Assurance Using Quality and Reliability Measures. December 2014. Technical Note
CMU/SEI-2014-TN-026. Carnegie Mellon University (GMU) Software Engineering
Institute (SEI) CERT Division/SSD.

[Wu, 2012] Wu, Dong-Jie, Te-En Wei, and Kuo-Ping Wu. “DroidMat: Android Malware
Detection through Manifest and API Calls Tracing.” Proceedings of the 2012 Seventh

Asia Joint Conference on Information Security (Asia JCIS). August 2012.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6298136&queryText%3D
DroidMat%3A+Android+Malware+Detection+through+Manifest+and+API+Calls+Traci
ng.

[Xu 2013] Xu, Wei, Fangfang Zhang, and Sencun Zhu. “Permlyzer: Analyzing
Permission Usage.” Proceedings of the IEEE 24th International Symposium on Software

Reliability Engineering (ISSRE) 2013.
http://www.cse.psu.edu/~szhu/papers/permlyzer.pdf.

[Zalewki2014] Zalewski, Michał (aka lcamtuf), “Pulling JPEGs out of thin air,” lcamtuf's

blog, November 07, 2014, http://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-
air.html, retrieved March 7, 2016.

http://www.dwheeler.com/trusting-trust/
http://www.dwheeler.com/essays/heartbleed.html
http://www.cs.ucr.edu/~neamtiu/pubs/acsac12wei.pdf
http://www.cs.ucr.edu/~neamtiu/pubs/mobicom12wei.pdf
http://www.extremetech.com/mobile/95147-Android-security-threats-and-what-users-can-do-to-stay-safe
http://www.extremetech.com/mobile/95147-Android-security-threats-and-what-users-can-do-to-stay-safe
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6298136&queryText%3DDroidMat%3A+Android+Malware+Detection+through+Manifest+and+API+Calls+Tracing
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6298136&queryText%3DDroidMat%3A+Android+Malware+Detection+through+Manifest+and+API+Calls+Tracing
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6298136&queryText%3DDroidMat%3A+Android+Malware+Detection+through+Manifest+and+API+Calls+Tracing
http://www.cse.psu.edu/~szhu/papers/permlyzer.pdf
http://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
http://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

 BB-20

 [Zhang 2013] Zhang, Yulong, Hui Xue, Tao Wei, Dawn Song. “Monitoring
Vulnaggressive Apps on Google Play.” FireEye Blog. November 2013.
http://www.fireeye.com/blog/technical/2013/11/monitoring-vulnaggressive-apps-on-
google-play.html.

[Zhou 2012] Zhou, Yajin, Xuxian Jiang. “Dissecting Android Malware: Characterization
and Evolution,” Proceedings of the 33rd IEEE Symposium on Security and Privacy

(Oakland 2012). May 2012.
http://www.csc.ncsu.edu/faculty/jiang/pubs/OAKLAND12.pdf.

http://www.fireeye.com/blog/technical/2013/11/monitoring-vulnaggressive-apps-on-google-play.html
http://www.fireeye.com/blog/technical/2013/11/monitoring-vulnaggressive-apps-on-google-play.html
http://www.csc.ncsu.edu/faculty/jiang/pubs/OAKLAND12.pdf

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of

information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for

reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports

(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding

any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not

display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 3. DATES COVERED (From – To)

00-11-16

2. REPORT TYPE

Final

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and Evaluation 2016 v.2 HQ0034-14-D-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

David A. Wheeler, Amy E. Henninger AU-5-3856

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION

REPORT NUMBER
P-8005
H 2016-000598

Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

DASD-SEKristen Baldwin, Acting Deputy Secretary of Defense, Systems Engineering
Office of the Deputy Assistant Secretary of Defense for Systems Engineering; Acquisition Technololgy
and Logistics
3030 Defense Pentagon, Room 3C167, Washington, DC 20301-3030

11. SPONSOR’S / MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

Project Leader: E. Kenneth Hong Fong

14. ABSTRACT

Unintentional and intentionally inserted vulnerabilities in software can provide adversaries with various avenues to reduce system effectiveness, render
systems useless, or even use our systems against us. Unfortunately, it can be difficult to determine what types of tools and techniques exist for evaluating
software, and where their use is appropriate.
This paper is written to enable DoD program managers (PMs), and their staff, to make effective software assurance and software supply chain risk
management (SCRM) decisions, particularly when they are developing and executing their program protection plan (PPP). A secondary purpose is to inform
DoD policymakers who are developing software policies. This paper describes an overall process for selecting and using appropriate analysis tool/technique
types for evaluating software: (1) Select technical objectives based on context; (2) Select tool/technique types to address those technical objectives; (3)
Select tools/techniques; (4) Summarize selection as part of a Program Protection Plan (PPP); (5) Apply the tools/techniques and report the results. This
paper identifies 59 types of tools and techniques available for analyzing software, along with a mapping between these tool/technique types and technical
objectives, to help readers identify and select types of tools and techniques.

15. SUBJECT TERMS

Software assurance, software vulnerabilities, software security assurance, supply chain risk management, SCRM, DoD, tools, static analysis, dynamic
analysis, hybrid analysis, weakness analysis, static analysis tools, dynamic analysis tools, unintentional, intentional, technical objectives, program protection
plan, PPP, target of evaluation, TOE, state-of-the-art, SOAR

16. SECURITY CLASSIFICATION OF:

17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER

OF PAGES

268

19a. NAME OF RESPONSIBLE PERSON

Kristen Baldwin, Acting Deputy Secretary of
Defense, Systems Engineering

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area

Code)

703-695-7417
Unclassified Unclassified Unclassified

